These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 23403464)

  • 1. Growth mechanisms and size control of FePt nanoparticles synthesized using Fe(CO)x (x < 5)-oleylamine and platinum(ii) acetylacetonate.
    Bian B; Xia W; Du J; Zhang J; Liu JP; Guo Z; Yan A
    Nanoscale; 2013 Mar; 5(6):2454-9. PubMed ID: 23403464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemically synthesized FePt nanoparticles with controlled particle size, shape and composition.
    Colak L; Hadjipanayis GC
    Nanotechnology; 2009 Dec; 20(48):485602. PubMed ID: 19880977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the nucleation and growth dynamics of FePt nanoparticles prepared via a high-temperature synthesis route employing PtCl(2) as platinum precursor.
    Heller H; Ahrenstorf K; Broekaert JA; Weller H
    Phys Chem Chem Phys; 2009 May; 11(17):3257-62. PubMed ID: 19370222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and compositional evolution of FePt nanocubes in oganometallic synthesis.
    Zhang C; Wang H; Mu Y; Zhang J; Wang H
    Nanoscale Res Lett; 2014; 9(1):615. PubMed ID: 25411569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel nanohybrids derived from the attachment of FePt nanoparticles on carbon nanotubes.
    Tsoufis T; Tomou A; Gournis D; Douvalis AP; Panagiotopoulos I; Kooi B; Georgakilas V; Arfaoui I; Bakas T
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5942-51. PubMed ID: 19198330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled co-deposition of FePt nanoparticles embedded in MgO: a detailed investigation of structure and electronic and magnetic properties.
    D'Addato S; Grillo V; di Bona A; Luches P; Frabboni S; Valeri S; Lupo P; Casoli F; Albertini F
    Nanotechnology; 2013 Dec; 24(49):495703. PubMed ID: 24231177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of different platinum precursors on the formation and reaction mechanism of FePt nanoparticles and their electrocatalytic performance towards methanol oxidation.
    Sahu NK; Prakash A; Bahadur D
    Dalton Trans; 2014 Mar; 43(12):4892-900. PubMed ID: 24492706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liquid cell transmission electron microscopy study of platinum iron nanocrystal growth and shape evolution.
    Liao HG; Zheng H
    J Am Chem Soc; 2013 Apr; 135(13):5038-43. PubMed ID: 23477794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sinter-free phase conversion and scanning transmission electron microscopy of FePt nanoparticle monolayers.
    Johnston-Peck AC; Scarel G; Wang J; Parsons GN; Tracy JB
    Nanoscale; 2011 Oct; 3(10):4142-9. PubMed ID: 21869998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface Modification and Heat Generation of FePt Nanoparticles.
    Wei DH; Pan KY; Tong SK
    Materials (Basel); 2017 Feb; 10(2):. PubMed ID: 28772541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Core/shell Pd/FePt nanoparticles as an active and durable catalyst for the oxygen reduction reaction.
    Mazumder V; Chi M; More KL; Sun S
    J Am Chem Soc; 2010 Jun; 132(23):7848-9. PubMed ID: 20496893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct synthesis and characterizations of fct-structured FePt nanoparticles using poly(N-vinyl-2-pyrrolidone) as a protecting agent.
    Iwamoto T; Matsumoto K; Matsushita T; Inokuchi M; Toshima N
    J Colloid Interface Sci; 2009 Aug; 336(2):879-88. PubMed ID: 19476950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-monotonic size change of monodisperse Fe₃O₄ nanoparticles in the scale-up synthesis.
    Song NN; Yang HT; Ren X; Li ZA; Luo Y; Shen J; Dai W; Zhang XQ; Cheng ZH
    Nanoscale; 2013 Apr; 5(7):2804-10. PubMed ID: 23440069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering inorganic hybrid nanoparticles: tuning combination fashions of gold, platinum, and iron oxide.
    Zhang HT; Ding J; Chow GM; Dong ZL
    Langmuir; 2008 Nov; 24(22):13197-202. PubMed ID: 18925758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of FePt nanocubes and their oriented self-assembly.
    Chen M; Kim J; Liu JP; Fan H; Sun S
    J Am Chem Soc; 2006 Jun; 128(22):7132-3. PubMed ID: 16734445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of nucleation and growth in the organometallic synthesis of magnetic alloy nanocrystals: the role of nucleation rate in size control of CoPt3 nanocrystals.
    Shevchenko EV; Talapin DV; Schnablegger H; Kornowski A; Festin O; Svedlindh P; Haase M; Weller H
    J Am Chem Soc; 2003 Jul; 125(30):9090-101. PubMed ID: 15369366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling the Morphology of Au-Pd Heterodimer Nanoparticles by Surface Ligands.
    Kluenker M; Connolly BM; Marolf DM; Nawaz Tahir M; Korschelt K; Simon P; Köhler U; Plana-Ruiz S; Barton B; Panthöfer M; Kolb U; Tremel W
    Inorg Chem; 2018 Nov; 57(21):13640-13652. PubMed ID: 30289701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopic and microscopic investigation of gold nanoparticle formation: ligand and temperature effects on rate and particle size.
    Sardar R; Shumaker-Parry JS
    J Am Chem Soc; 2011 Jun; 133(21):8179-90. PubMed ID: 21548572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influences of surface coatings and components of FePt nanoparticles on the suppression of glioma cell proliferation.
    Sun H; Chen X; Chen D; Dong M; Fu X; Li Q; Liu X; Wu Q; Qiu T; Wan T; Li S
    Int J Nanomedicine; 2012; 7():3295-307. PubMed ID: 22848161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A general strategy for synthesizing high-coercivity L1
    Lei W; Yu Y; Yang W; Feng M; Li H
    Nanoscale; 2017 Sep; 9(35):12855-12861. PubMed ID: 28849847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.