These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 23403555)
1. Transcriptional profiling of Candida glabrata during phagocytosis by neutrophils and in the infected mouse spleen. Fukuda Y; Tsai HF; Myers TG; Bennett JE Infect Immun; 2013 Apr; 81(4):1325-33. PubMed ID: 23403555 [TBL] [Abstract][Full Text] [Related]
2. Role of Dectin-2 for host defense against systemic infection with Candida glabrata. Ifrim DC; Bain JM; Reid DM; Oosting M; Verschueren I; Gow NA; van Krieken JH; Brown GD; Kullberg BJ; Joosten LA; van der Meer JW; Koentgen F; Erwig LP; Quintin J; Netea MG Infect Immun; 2014 Mar; 82(3):1064-73. PubMed ID: 24343653 [TBL] [Abstract][Full Text] [Related]
3. Skn7p is involved in oxidative stress response and virulence of Candida glabrata. Saijo T; Miyazaki T; Izumikawa K; Mihara T; Takazono T; Kosai K; Imamura Y; Seki M; Kakeya H; Yamamoto Y; Yanagihara K; Kohno S Mycopathologia; 2010 Feb; 169(2):81-90. PubMed ID: 19693686 [TBL] [Abstract][Full Text] [Related]
4. Neutrophil activation by Candida glabrata but not Candida albicans promotes fungal uptake by monocytes. Duggan S; Essig F; Hünniger K; Mokhtari Z; Bauer L; Lehnert T; Brandes S; Häder A; Jacobsen ID; Martin R; Figge MT; Kurzai O Cell Microbiol; 2015 Sep; 17(9):1259-76. PubMed ID: 25850517 [TBL] [Abstract][Full Text] [Related]
5. Immune evasion, stress resistance, and efficient nutrient acquisition are crucial for intracellular survival of Candida glabrata within macrophages. Seider K; Gerwien F; Kasper L; Allert S; Brunke S; Jablonowski N; Schwarzmüller T; Barz D; Rupp S; Kuchler K; Hube B Eukaryot Cell; 2014 Jan; 13(1):170-83. PubMed ID: 24363366 [TBL] [Abstract][Full Text] [Related]
6. Aspartyl proteases in Rasheed M; Battu A; Kaur R J Biol Chem; 2018 Apr; 293(17):6410-6433. PubMed ID: 29491142 [TBL] [Abstract][Full Text] [Related]
7. The Candida glabrata sterol scavenging mechanism, mediated by the ATP-binding cassette transporter Aus1p, is regulated by iron limitation. Nagi M; Tanabe K; Ueno K; Nakayama H; Aoyama T; Chibana H; Yamagoe S; Umeyama T; Oura T; Ohno H; Kajiwara S; Miyazaki Y Mol Microbiol; 2013 Apr; 88(2):371-81. PubMed ID: 23448689 [TBL] [Abstract][Full Text] [Related]
8. Functional genomic analysis of Candida glabrata-macrophage interaction: role of chromatin remodeling in virulence. Rai MN; Balusu S; Gorityala N; Dandu L; Kaur R PLoS Pathog; 2012; 8(8):e1002863. PubMed ID: 22916016 [TBL] [Abstract][Full Text] [Related]
9. Human neutrophils dump Candida glabrata after intracellular killing. Essig F; Hünniger K; Dietrich S; Figge MT; Kurzai O Fungal Genet Biol; 2015 Nov; 84():37-40. PubMed ID: 26385824 [TBL] [Abstract][Full Text] [Related]
10. Spleen Tyrosine Kinase Is a Critical Regulator of Neutrophil Responses to Negoro PE; Xu S; Dagher Z; Hopke A; Reedy JL; Feldman MB; Khan NS; Viens AL; Alexander NJ; Atallah NJ; Scherer AK; Dutko RA; Jeffery J; Kernien JF; Fites JS; Nett JE; Klein BS; Vyas JM; Irimia D; Sykes DB; Mansour MK mBio; 2020 May; 11(3):. PubMed ID: 32398316 [TBL] [Abstract][Full Text] [Related]
11. Intracellular survival of Candida glabrata in macrophages: immune evasion and persistence. Kasper L; Seider K; Hube B FEMS Yeast Res; 2015 Aug; 15(5):fov042. PubMed ID: 26066553 [TBL] [Abstract][Full Text] [Related]
12. A new regulator in the crossroads of oxidative stress resistance and virulence in Pais P; Vagueiro S; Mil-Homens D; Pimenta AI; Viana R; Okamoto M; Chibana H; Fialho AM; Teixeira MC Virulence; 2020 Dec; 11(1):1522-1538. PubMed ID: 33135521 [No Abstract] [Full Text] [Related]
13. The Drosophila Toll pathway controls but does not clear Candida glabrata infections. Quintin J; Asmar J; Matskevich AA; Lafarge MC; Ferrandon D J Immunol; 2013 Mar; 190(6):2818-27. PubMed ID: 23401590 [TBL] [Abstract][Full Text] [Related]
14. Dectin-1 plays an important role in host defense against systemic Candida glabrata infection. Chen SM; Shen H; Zhang T; Huang X; Liu XQ; Guo SY; Zhao JJ; Wang CF; Yan L; Xu GT; Jiang YY; An MM Virulence; 2017 Nov; 8(8):1643-1656. PubMed ID: 28658592 [TBL] [Abstract][Full Text] [Related]
15. Efficacies of fluconazole, caspofungin, and amphotericin B in Candida glabrata-infected p47phox-/- knockout mice. Ju JY; Polhamus C; Marr KA; Holland SM; Bennett JE Antimicrob Agents Chemother; 2002 May; 46(5):1240-5. PubMed ID: 11959551 [TBL] [Abstract][Full Text] [Related]
16. The mitogen-activated protein kinase CgHog1 is required for iron homeostasis, adherence and virulence in Candida glabrata. Srivastava VK; Suneetha KJ; Kaur R FEBS J; 2015 Jun; 282(11):2142-66. PubMed ID: 25772226 [TBL] [Abstract][Full Text] [Related]
17. Glyoxylate cycle gene ICL1 is essential for the metabolic flexibility and virulence of Candida glabrata. Chew SY; Ho KL; Cheah YK; Ng TS; Sandai D; Brown AJP; Than LTL Sci Rep; 2019 Feb; 9(1):2843. PubMed ID: 30808979 [TBL] [Abstract][Full Text] [Related]
18. Contribution of CgPDR1-regulated genes in enhanced virulence of azole-resistant Candida glabrata. Ferrari S; Sanguinetti M; Torelli R; Posteraro B; Sanglard D PLoS One; 2011 Mar; 6(3):e17589. PubMed ID: 21408004 [TBL] [Abstract][Full Text] [Related]
19. Moonlighting proteins induce protection in a mouse model against Candida species. Medrano-Díaz CL; Vega-González A; Ruiz-Baca E; Moreno A; Cuéllar-Cruz M Microb Pathog; 2018 Nov; 124():21-29. PubMed ID: 30118801 [TBL] [Abstract][Full Text] [Related]
20. Candida glabrata tryptophan-based pigment production via the Ehrlich pathway. Brunke S; Seider K; Almeida RS; Heyken A; Fleck CB; Brock M; Barz D; Rupp S; Hube B Mol Microbiol; 2010 Apr; 76(1):25-47. PubMed ID: 20199593 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]