BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 23403699)

  • 1. Microfluidics study of intracellular calcium response to mechanical stimulation on single suspension cells.
    Xu T; Yue W; Li CW; Yao X; Yang M
    Lab Chip; 2013 Mar; 13(6):1060-9. PubMed ID: 23403699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time monitoring of suspension cell-cell communication using an integrated microfluidics.
    Xu T; Yue W; Li CW; Yao X; Cai G; Yang M
    Lab Chip; 2010 Sep; 10(17):2271-8. PubMed ID: 20614062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of a novel microfluidic disk in the analysis of single-cell viability and the application to Jurkat cells.
    Kubo I; Furutani S; Matoba K
    J Biosci Bioeng; 2011 Jul; 112(1):98-101. PubMed ID: 21497547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apoptotic cell death dynamics of HL60 cells studied using a microfluidic cell trap device.
    Valero A; Merino F; Wolbers F; Luttge R; Vermes I; Andersson H; van den Berg A
    Lab Chip; 2005 Jan; 5(1):49-55. PubMed ID: 15616740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic cytometer based on dual photodiode detection for cell size and deformability analysis.
    Ji QQ; Du GS; van Uden MJ; Fang Q; den Toonder JM
    Talanta; 2013 Jul; 111():178-82. PubMed ID: 23622542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dose-dependent cell-based assays in V-shaped microfluidic channels.
    Li CW; Yang J; Yang M
    Lab Chip; 2006 Jul; 6(7):921-9. PubMed ID: 16804597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic formation of single cell array for parallel analysis of Ca2+ release-activated Ca2+ (CRAC) channel activation and inhibition.
    Xu T; Li CW; Yao X; Cai G; Yang M
    Anal Biochem; 2010 Jan; 396(2):173-9. PubMed ID: 19751694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-yield cell ordering and deterministic cell-in-droplet encapsulation using Dean flow in a curved microchannel.
    Kemna EW; Schoeman RM; Wolbers F; Vermes I; Weitz DA; van den Berg A
    Lab Chip; 2012 Aug; 12(16):2881-7. PubMed ID: 22688131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microfluidic system with optical laser tweezers to study mechanotransduction and focal adhesion recruitment.
    Honarmandi P; Lee H; Lang MJ; Kamm RD
    Lab Chip; 2011 Feb; 11(4):684-94. PubMed ID: 21152510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic chip to produce temperature jumps for electrophysiology.
    Pennell T; Suchyna T; Wang J; Heo J; Felske JD; Sachs F; Hua SZ
    Anal Chem; 2008 Apr; 80(7):2447-51. PubMed ID: 18302344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A microfluidic device for depositing and addressing two cell populations with intercellular population communication capability.
    Lovchik RD; Tonna N; Bianco F; Matteoli M; Delamarche E
    Biomed Microdevices; 2010 Apr; 12(2):275-82. PubMed ID: 20013313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress.
    Shao J; Wu L; Wu J; Zheng Y; Zhao H; Jin Q; Zhao J
    Lab Chip; 2009 Nov; 9(21):3118-25. PubMed ID: 19823728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic osmotic loading of chondrocytes using a novel microfluidic device.
    Chao PG; Tang Z; Angelini E; West AC; Costa KD; Hung CT
    J Biomech; 2005 Jun; 38(6):1273-81. PubMed ID: 15863112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A self-contained, programmable microfluidic cell culture system with real-time microscopy access.
    Skafte-Pedersen P; Hemmingsen M; Sabourin D; Blaga FS; Bruus H; Dufva M
    Biomed Microdevices; 2012 Apr; 14(2):385-99. PubMed ID: 22160447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global cytoskeletal control of mechanotransduction in kidney epithelial cells.
    Alenghat FJ; Nauli SM; Kolb R; Zhou J; Ingber DE
    Exp Cell Res; 2004 Nov; 301(1):23-30. PubMed ID: 15501441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic array cytometer based on refractive optical tweezers for parallel trapping, imaging and sorting of individual cells.
    Werner M; Merenda F; Piguet J; Salathé RP; Vogel H
    Lab Chip; 2011 Jul; 11(14):2432-9. PubMed ID: 21655617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of membrane-tension gated Ca
    He L; Tao J; Maity D; Si F; Wu Y; Wu T; Prasath V; Wirtz D; Sun SX
    J Cell Sci; 2018 Feb; 131(4):. PubMed ID: 29361533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional microfiber devices that mimic physiological environments to probe cell mechanics and signaling.
    Ruder WC; Pratt ED; Bakhru S; Sitti M; Zappe S; Cheng CM; Antaki JF; LeDuc PR
    Lab Chip; 2012 Apr; 12(10):1775-9. PubMed ID: 22374375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanowire-integrated microfluidic devices for facile and reagent-free mechanical cell lysis.
    Kim J; Hong JW; Kim DP; Shin JH; Park I
    Lab Chip; 2012 Aug; 12(16):2914-21. PubMed ID: 22722645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.
    Lin SC; Yen PW; Peng CC; Tung YC
    Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.