BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 23403917)

  • 1. Horizontally patterned Si nanowire growth for nanomechanical devices.
    Fernandez-Regulez M; Sansa M; Serra-Garcia M; Gil-Santos E; Tamayo J; Perez-Murano F; San Paulo A
    Nanotechnology; 2013 Mar; 24(9):095303. PubMed ID: 23403917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrical actuation and readout in a nanoelectromechanical resonator based on a laterally suspended zinc oxide nanowire.
    Khaderbad MA; Choi Y; Hiralal P; Aziz A; Wang N; Durkan C; Thiruvenkatanathan P; Amaratunga GA; Rao VR; Seshia AA
    Nanotechnology; 2012 Jan; 23(2):025501. PubMed ID: 22166842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical Transduction for Vertical Nanowire Resonators.
    Molina J; Ramos D; Gil-Santos E; Escobar JE; Ruz JJ; Tamayo J; San Paulo Á; Calleja M
    Nano Lett; 2020 Apr; 20(4):2359-2369. PubMed ID: 32191041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale opening fabrication on Si (111) surface from SiO2 barrier for vertical growth of III-V nanowire arrays.
    Shi T; Wang X; Wang B; Wang W; Yang X; Yang W; Chen Q; Xu H; Xu S; Yang T
    Nanotechnology; 2015 Jul; 26(26):265302. PubMed ID: 26062784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wafer-scale high-throughput ordered arrays of Si and coaxial Si/Si(1-x)Ge(x) wires: fabrication, characterization, and photovoltaic application.
    Pan C; Luo Z; Xu C; Luo J; Liang R; Zhu G; Wu W; Guo W; Yan X; Xu J; Wang ZL; Zhu J
    ACS Nano; 2011 Aug; 5(8):6629-36. PubMed ID: 21749059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-scale controllable patterning growth of aligned organic nanowires through evaporation-induced self-assembly.
    Bao R; Zhang C; Wang Z; Zhang X; Ou X; Lee CS; Jie J; Zhang X
    Chemistry; 2012 Jan; 18(3):975-80. PubMed ID: 22170498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-sensitivity linear piezoresistive transduction for nanomechanical beam resonators.
    Sansa M; Fernández-Regúlez M; Llobet J; San Paulo Á; Pérez-Murano F
    Nat Commun; 2014 Jul; 5():4313. PubMed ID: 25000256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superlattice nanowire pattern transfer (SNAP).
    Heath JR
    Acc Chem Res; 2008 Dec; 41(12):1609-17. PubMed ID: 18598059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of nanowire optical cavities as efficient photon absorbers.
    Kim SK; Song KD; Kempa TJ; Day RW; Lieber CM; Park HG
    ACS Nano; 2014 Apr; 8(4):3707-14. PubMed ID: 24617563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scalable Top-Down Approach Tailored by Interferometric Lithography to Achieve Large-Area Single-Mode GaN Nanowire Laser Arrays on Sapphire Substrate.
    Behzadirad M; Nami M; Wostbrock N; Zamani Kouhpanji MR; Feezell DF; Brueck SRJ; Busani T
    ACS Nano; 2018 Mar; 12(3):2373-2380. PubMed ID: 29401381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Guided growth of millimeter-long horizontal nanowires with controlled orientations.
    Tsivion D; Schvartzman M; Popovitz-Biro R; von Huth P; Joselevich E
    Science; 2011 Aug; 333(6045):1003-7. PubMed ID: 21852496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tapering control of Si nanowires grown from SiCl₄ at reduced pressure.
    Krylyuk S; Davydov AV; Levin I
    ACS Nano; 2011 Jan; 5(1):656-64. PubMed ID: 21158417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High Dynamic Range Nanowire Resonators.
    Molina J; Escobar JE; Ramos D; Gil-Santos E; Ruz JJ; Tamayo J; San Paulo Á; Calleja M
    Nano Lett; 2021 Aug; 21(15):6617-6624. PubMed ID: 34288677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of nanowire devices in out-of-plane geometry.
    Manandhar P; Akhadov EA; Tracy C; Picraux ST
    Nano Lett; 2010 Jun; 10(6):2126-32. PubMed ID: 20462231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. III-V nanowire arrays: growth and light interaction.
    Heiss M; Russo-Averchi E; Dalmau-Mallorquí A; Tütüncüoğlu G; Matteini F; Rüffer D; Conesa-Boj S; Demichel O; Alarcon-Lladó E; Fontcuberta i Morral A
    Nanotechnology; 2014 Jan; 25(1):014015. PubMed ID: 24334728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrahigh-density nanowire lattices and circuits.
    Melosh NA; Boukai A; Diana F; Gerardot B; Badolato A; Petroff PM; Heath JR
    Science; 2003 Apr; 300(5616):112-5. PubMed ID: 12637672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterned growth of vertically aligned organic nanowire waveguide arrays.
    Zhao YS; Zhan P; Kim J; Sun C; Huang J
    ACS Nano; 2010 Mar; 4(3):1630-6. PubMed ID: 20143788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonance properties of thick plasmonic split ring resonators for sensing applications.
    Giorgis V; Zilio P; Ruffato G; Massari M; Zacco G; Romanato F
    Opt Express; 2014 Nov; 22(22):26476-86. PubMed ID: 25401799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly ordered vertical GaAs nanowire arrays with dry etching and their optical properties.
    Dhindsa N; Chia A; Boulanger J; Khodadad I; LaPierre R; Saini SS
    Nanotechnology; 2014 Aug; 25(30):305303. PubMed ID: 25008170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An ordered Si nanowire with NiSi2 tip arrays as excellent field emitters.
    Liu CY; Li WS; Chu LW; Lu MY; Tsai CJ; Chen LJ
    Nanotechnology; 2011 Feb; 22(5):055603. PubMed ID: 21178255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.