BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 23403923)

  • 21. The role of serotonin in the control of locomotor movements and strategies for restoring locomotion after spinal cord injury.
    Sławińska U; Miazga K; Jordan LM
    Acta Neurobiol Exp (Wars); 2014; 74(2):172-87. PubMed ID: 24993627
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activation of human spinal locomotor circuitry using transvertebral magnetic stimulation.
    Kawai K; Tazoe T; Yanai T; Kanosue K; Nishimura Y
    Front Hum Neurosci; 2022; 16():1016064. PubMed ID: 36211130
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Descending Dopaminergic Inputs to Reticulospinal Neurons Promote Locomotor Movements.
    Ryczko D; Grätsch S; Alpert MH; Cone JJ; Kasemir J; Ruthe A; Beauséjour PA; Auclair F; Roitman MF; Alford S; Dubuc R
    J Neurosci; 2020 Oct; 40(44):8478-8490. PubMed ID: 32998974
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gating of steering signals through phasic modulation of reticulospinal neurons during locomotion.
    Kozlov AK; Kardamakis AA; Hellgren Kotaleski J; Grillner S
    Proc Natl Acad Sci U S A; 2014 Mar; 111(9):3591-6. PubMed ID: 24550483
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Afferent control of locomotor CPG: insights from a simple neuromechanical model.
    Markin SN; Klishko AN; Shevtsova NA; Lemay MA; Prilutsky BI; Rybak IA
    Ann N Y Acad Sci; 2010 Jun; 1198():21-34. PubMed ID: 20536917
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Partly shared spinal cord networks for locomotion and scratching.
    Berkowitz A; Hao ZZ
    Integr Comp Biol; 2011 Dec; 51(6):890-902. PubMed ID: 21700568
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multilevel Analysis of Locomotion in Immature Preparations Suggests Innovative Strategies to Reactivate Stepping after Spinal Cord Injury.
    Brumley MR; Guertin PA; Taccola G
    Curr Pharm Des; 2017; 23(12):1764-1777. PubMed ID: 27981910
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling and analysis of a new locomotion control neural networks.
    Liu Q; Wang JZ
    Biol Cybern; 2018 Aug; 112(4):345-356. PubMed ID: 29700596
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modular neuromuscular control of human locomotion by central pattern generator.
    Haghpanah SA; Farahmand F; Zohoor H
    J Biomech; 2017 Feb; 53():154-162. PubMed ID: 28126336
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preclinical evidence supporting the clinical development of central pattern generator-modulating therapies for chronic spinal cord-injured patients.
    Guertin PA
    Front Hum Neurosci; 2014; 8():272. PubMed ID: 24910602
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Elimination of Left-Right Reciprocal Coupling in the Adult Lamprey Spinal Cord Abolishes the Generation of Locomotor Activity.
    Messina JA; St Paul A; Hargis S; Thompson WE; McClellan AD
    Front Neural Circuits; 2017; 11():89. PubMed ID: 29225569
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Initiation of locomotion in lampreys.
    Dubuc R; Brocard F; Antri M; Fénelon K; Gariépy JF; Smetana R; Ménard A; Le Ray D; Viana Di Prisco G; Pearlstein E; Sirota MG; Derjean D; St-Pierre M; Zielinski B; Auclair F; Veilleux D
    Brain Res Rev; 2008 Jan; 57(1):172-82. PubMed ID: 17916380
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fictive rhythmic motor patterns produced by the tail spinal cord in salamanders.
    Charrier V; Cabelguen JM
    Neuroscience; 2013; 255():191-202. PubMed ID: 24161283
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Generation of locomotion rhythms without inhibition in vertebrates: the search for pacemaker neurons.
    Li WC
    Integr Comp Biol; 2011 Dec; 51(6):879-89. PubMed ID: 21562024
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physiological, anatomical and genetic identification of CPG neurons in the developing mammalian spinal cord.
    Kiehn O; Butt SJ
    Prog Neurobiol; 2003 Jul; 70(4):347-61. PubMed ID: 12963092
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Model of a bilateral Brown-type central pattern generator for symmetric and asymmetric locomotion.
    Sobinov A; Yakovenko S
    J Neurophysiol; 2018 Mar; 119(3):1071-1083. PubMed ID: 29187551
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Probing the Human Spinal Locomotor Circuits by Phasic Step-Induced Feedback and by Tonic Electrical and Pharmacological Neuromodulation.
    Hofstoetter US; Knikou M; Guertin PA; Minassian K
    Curr Pharm Des; 2017; 23(12):1805-1820. PubMed ID: 27981912
    [TBL] [Abstract][Full Text] [Related]  

  • 38. State-dependent rhythmogenesis and frequency control in a half-center locomotor CPG.
    Ausborn J; Snyder AC; Shevtsova NA; Rybak IA; Rubin JE
    J Neurophysiol; 2018 Jan; 119(1):96-117. PubMed ID: 28978767
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Arm sway holds sway: locomotor-like modulation of leg reflexes when arms swing in alternation.
    Massaad F; Levin O; Meyns P; Drijkoningen D; Swinnen SP; Duysens J
    Neuroscience; 2014 Jan; 258():34-46. PubMed ID: 24144625
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dopamine: a parallel pathway for the modulation of spinal locomotor networks.
    Sharples SA; Koblinger K; Humphreys JM; Whelan PJ
    Front Neural Circuits; 2014; 8():55. PubMed ID: 24982614
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.