BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 23403923)

  • 41. Rapid recovery and altered neurochemical dependence of locomotor central pattern generation following lumbar neonatal spinal cord injury.
    Züchner M; Kondratskaya E; Sylte CB; Glover JC; Boulland JL
    J Physiol; 2018 Jan; 596(2):281-303. PubMed ID: 29086918
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multi-layered multi-pattern CPG for adaptive locomotion of humanoid robots.
    Nassour J; Hénaff P; Benouezdou F; Cheng G
    Biol Cybern; 2014 Jun; 108(3):291-303. PubMed ID: 24570353
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The roles of ascending sensory signals and top-down central control in the entrainment of a locomotor CPG.
    Codianni MG; Daun S; Rubin JE
    Biol Cybern; 2020 Dec; 114(6):533-555. PubMed ID: 33289879
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An analog CMOS central pattern generator for interlimb coordination in quadruped locomotion.
    Nakada K; Asai T; Amemiya Y
    IEEE Trans Neural Netw; 2003; 14(5):1356-65. PubMed ID: 18244582
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Some historical reflections on the neural control of locomotion.
    Clarac F
    Brain Res Rev; 2008 Jan; 57(1):13-21. PubMed ID: 17919733
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A mathematical model of adaptive behavior in quadruped locomotion.
    Ito S; Yuasa H; Luo ZW; Ito M; Yanagihara D
    Biol Cybern; 1998 May; 78(5):337-47. PubMed ID: 9691263
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The generation of antiphase oscillations and synchrony by a rebound-based vertebrate central pattern generator.
    Li WC; Merrison-Hort R; Zhang HY; Borisyuk R
    J Neurosci; 2014 Apr; 34(17):6065-77. PubMed ID: 24760866
    [TBL] [Abstract][Full Text] [Related]  

  • 48. From swimming to walking: a single basic network for two different behaviors.
    Bem T; Cabelguen JM; Ekeberg O; Grillner S
    Biol Cybern; 2003 Feb; 88(2):79-90. PubMed ID: 12567223
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modulation of motoneurone excitability during rhythmic motor outputs.
    Power KE; Lockyer EJ; Forman DA; Button DC
    Appl Physiol Nutr Metab; 2018 Nov; 43(11):1176-1185. PubMed ID: 29522692
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The role of the serotonergic system in locomotor recovery after spinal cord injury.
    Ghosh M; Pearse DD
    Front Neural Circuits; 2014; 8():151. PubMed ID: 25709569
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Using an upright preparation to identify and characterize locomotor related neurons across the transverse plane of the neonatal mouse spinal cord.
    Rancic V; Haque F; Ballanyi K; Gosgnach S
    J Neurosci Methods; 2019 Jul; 323():90-97. PubMed ID: 31132372
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Bcm rule allows a spinal cord model to learn rhythmic movements.
    Kohler M; Röhrbein F; Knoll A; Albu-Schäffer A; Jörntell H
    Biol Cybern; 2023 Oct; 117(4-5):275-284. PubMed ID: 37594531
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Interaction between developing spinal locomotor networks in the neonatal mouse.
    Gordon IT; Dunbar MJ; Vanneste KJ; Whelan PJ
    J Neurophysiol; 2008 Jul; 100(1):117-28. PubMed ID: 18436636
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Motor module activation sequence and topography in the spinal cord during air-stepping in human: Insights into the traveling wave in spinal locomotor circuits.
    Yokoyama H; Hagio K; Ogawa T; Nakazawa K
    Physiol Rep; 2017 Nov; 5(22):. PubMed ID: 29180480
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spinal inhibitory interneurons: regulators of coordination during locomotor activity.
    Gosgnach S
    Front Neural Circuits; 2023; 17():1167836. PubMed ID: 37151357
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Central pattern generator network model for the alternating hind limb gait of rats based on the modified Van der Pol equation.
    Shen X; Wu Y; Lou X; Li Z; Ma L; Bian X
    Med Biol Eng Comput; 2023 Feb; 61(2):555-566. PubMed ID: 36538267
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Activity-dependent modulation of adaptation produces a constant burst proportion in a model of the lamprey spinal locomotor generator.
    Ullström M; Kotaleski JH; Tegnér J; Aurell E; Grillner S; Lansner A
    Biol Cybern; 1998 Jul; 79(1):1-14. PubMed ID: 9742673
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The CPGs for Limbed Locomotion-Facts and Fiction.
    Grillner S; Kozlov A
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34070932
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mechanosensory inputs to the central pattern generators for locomotion in the lamprey spinal cord: resetting, entrainment, and computer modeling.
    McClellan AD; Jang W
    J Neurophysiol; 1993 Dec; 70(6):2442-54. PubMed ID: 8120592
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Asymmetric operation of the locomotor central pattern generator in the neonatal mouse spinal cord.
    Endo T; Kiehn O
    J Neurophysiol; 2008 Dec; 100(6):3043-54. PubMed ID: 18829847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.