BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 23404072)

  • 1. Pore geometry regulates early stage human bone marrow cell tissue formation and organisation.
    Knychala J; Bouropoulos N; Catt CJ; Katsamenis OL; Please CP; Sengers BG
    Ann Biomed Eng; 2013 May; 41(5):917-30. PubMed ID: 23404072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of bone ingrowth into porous biomaterials using MICRO-CT.
    Jones AC; Arns CH; Sheppard AP; Hutmacher DW; Milthorpe BK; Knackstedt MA
    Biomaterials; 2007 May; 28(15):2491-504. PubMed ID: 17335896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel bone scaffold design approach based on shape function and all-hexahedral mesh refinement.
    Cai S; Xi J; Chua CK
    Methods Mol Biol; 2012; 868():45-55. PubMed ID: 22692603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porosity of 3D biomaterial scaffolds and osteogenesis.
    Karageorgiou V; Kaplan D
    Biomaterials; 2005 Sep; 26(27):5474-91. PubMed ID: 15860204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrophobicity as a design criterion for polymer scaffolds in bone tissue engineering.
    Jansen EJ; Sladek RE; Bahar H; Yaffe A; Gijbels MJ; Kuijer R; Bulstra SK; Guldemond NA; Binderman I; Koole LH
    Biomaterials; 2005 Jul; 26(21):4423-31. PubMed ID: 15701371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics.
    Mastrogiacomo M; Scaglione S; Martinetti R; Dolcini L; Beltrame F; Cancedda R; Quarto R
    Biomaterials; 2006 Jun; 27(17):3230-7. PubMed ID: 16488007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and characterization of a multilayer biomimetic scaffold for bone tissue engineering.
    Kong L; Ao Q; Wang A; Gong K; Wang X; Lu G; Gong Y; Zhao N; Zhang X
    J Biomater Appl; 2007 Nov; 22(3):223-39. PubMed ID: 17255157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pore size regulates cell and tissue interactions with PLGA-CaP scaffolds used for bone engineering.
    Sicchieri LG; Crippa GE; de Oliveira PT; Beloti MM; Rosa AL
    J Tissue Eng Regen Med; 2012 Feb; 6(2):155-62. PubMed ID: 21446054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration.
    Adachi T; Osako Y; Tanaka M; Hojo M; Hollister SJ
    Biomaterials; 2006 Jul; 27(21):3964-72. PubMed ID: 16584771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micro-finite element models of bone tissue-engineering scaffolds.
    Lacroix D; Chateau A; Ginebra MP; Planell JA
    Biomaterials; 2006 Oct; 27(30):5326-34. PubMed ID: 16824593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Bone tissue engineering seeded with bone marrow stromal cells].
    Guo Z; Dang G; Wang Z; Zhang H
    Zhonghua Wai Ke Za Zhi; 1999 Jul; 37(7):395-8. PubMed ID: 11829870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro.
    Akay G; Birch MA; Bokhari MA
    Biomaterials; 2004 Aug; 25(18):3991-4000. PubMed ID: 15046889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computational model for cell/ECM growth on 3D surfaces using the level set method: a bone tissue engineering case study.
    Guyot Y; Papantoniou I; Chai YC; Van Bael S; Schrooten J; Geris L
    Biomech Model Mechanobiol; 2014 Nov; 13(6):1361-71. PubMed ID: 24696122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SEM and 3D synchrotron radiation micro-tomography in the study of bioceramic scaffolds for tissue-engineering applications.
    Peyrin F; Mastrogiacomo M; Cancedda R; Martinetti R
    Biotechnol Bioeng; 2007 Jun; 97(3):638-48. PubMed ID: 17089389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resorbable glass-ceramic phosphate-based scaffolds for bone tissue engineering: synthesis, properties, and in vitro effects on human marrow stromal cells.
    Vitale-Brovarone C; Ciapetti G; Leonardi E; Baldini N; Bretcanu O; Verné E; Baino F
    J Biomater Appl; 2011 Nov; 26(4):465-89. PubMed ID: 20566654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of dispersant concentration on the pore morphology of hydroxyapatite ceramics for bone tissue engineering.
    Cyster LA; Grant DM; Howdle SM; Rose FR; Irvine DJ; Freeman D; Scotchford CA; Shakesheff KM
    Biomaterials; 2005 Mar; 26(7):697-702. PubMed ID: 15350773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chitosan-poly(butylene succinate) scaffolds and human bone marrow stromal cells induce bone repair in a mouse calvaria model.
    Costa-Pinto AR; Correlo VM; Sol PC; Bhattacharya M; Srouji S; Livne E; Reis RL; Neves NM
    J Tissue Eng Regen Med; 2012 Jan; 6(1):21-8. PubMed ID: 21312336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling porous scaffold microstructure by a reaction-diffusion system and its degradation by hydrolysis.
    Garzón-Alvarado DA; Velasco MA; Narváez-Tovar CA
    Comput Biol Med; 2012 Feb; 42(2):147-55. PubMed ID: 22136697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pore characteristics of bone substitute materials assessed by microcomputed tomography.
    Klein M; Goetz H; Pazen S; Al-Nawas B; Wagner W; Duschner H
    Clin Oral Implants Res; 2009 Jan; 20(1):67-74. PubMed ID: 19126109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a biodegradable scaffold with interconnected pores by heat fusion and its application to bone tissue engineering.
    Shin M; Abukawa H; Troulis MJ; Vacanti JP
    J Biomed Mater Res A; 2008 Mar; 84(3):702-9. PubMed ID: 17635029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.