BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 23404072)

  • 21. Development of a biodegradable scaffold with interconnected pores by heat fusion and its application to bone tissue engineering.
    Shin M; Abukawa H; Troulis MJ; Vacanti JP
    J Biomed Mater Res A; 2008 Mar; 84(3):702-9. PubMed ID: 17635029
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bone formation on the apatite-coated zirconia porous scaffolds within a rabbit calvarial defect.
    Kim HW; Shin SY; Kim HE; Lee YM; Chung CP; Lee HH; Rhyu IC
    J Biomater Appl; 2008 May; 22(6):485-504. PubMed ID: 17494967
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Porous PEOT/PBT scaffolds for bone tissue engineering: preparation, characterization, and in vitro bone marrow cell culturing.
    Claase MB; Grijpma DW; Mendes SC; De Bruijn JD; Feijen J
    J Biomed Mater Res A; 2003 Feb; 64(2):291-300. PubMed ID: 12522816
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity.
    Lin CY; Kikuchi N; Hollister SJ
    J Biomech; 2004 May; 37(5):623-36. PubMed ID: 15046991
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimising bioactive glass scaffolds for bone tissue engineering.
    Jones JR; Ehrenfried LM; Hench LL
    Biomaterials; 2006 Mar; 27(7):964-73. PubMed ID: 16102812
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid prototyped porous titanium coated with calcium phosphate as a scaffold for bone tissue engineering.
    Lopez-Heredia MA; Sohier J; Gaillard C; Quillard S; Dorget M; Layrolle P
    Biomaterials; 2008 Jun; 29(17):2608-15. PubMed ID: 18358527
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bone inductive properties of rhBMP-2 loaded porous calcium phosphate cement implants inserted at an ectopic site in rabbits.
    Kroese-Deutman HC; Ruhé PQ; Spauwen PH; Jansen JA
    Biomaterials; 2005 Apr; 26(10):1131-8. PubMed ID: 15451632
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering.
    Murphy CM; Haugh MG; O'Brien FJ
    Biomaterials; 2010 Jan; 31(3):461-6. PubMed ID: 19819008
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Macroporous scaffolds associated with cells to construct a hybrid biomaterial for bone tissue engineering.
    Rosa AL; de Oliveira PT; Beloti MM
    Expert Rev Med Devices; 2008 Nov; 5(6):719-28. PubMed ID: 19025348
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On scaffold designing for bone regeneration: A computational multiscale approach.
    Sanz-Herrera JA; García-Aznar JM; Doblaré M
    Acta Biomater; 2009 Jan; 5(1):219-29. PubMed ID: 18725187
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineered cellular response to scaffold architecture in a rabbit trephine defect.
    Simon JL; Roy TD; Parsons JR; Rekow ED; Thompson VP; Kemnitzer J; Ricci JL
    J Biomed Mater Res A; 2003 Aug; 66(2):275-82. PubMed ID: 12888997
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Theoretical model to determine the effects of geometrical factors on the resorption of calcium phosphate bone substitutes.
    Bohner M; Baumgart F
    Biomaterials; 2004 Aug; 25(17):3569-82. PubMed ID: 15020131
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method.
    Oh SH; Park IK; Kim JM; Lee JH
    Biomaterials; 2007 Mar; 28(9):1664-71. PubMed ID: 17196648
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Osteoblastic behavior of human bone marrow cells cultured over adsorbed collagen layer, over surface of collagen gels, and inside collagen gels.
    Fernandes LF; Costa MA; Fernandes MH; Tomás H
    Connect Tissue Res; 2009; 50(5):336-46. PubMed ID: 19863393
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Permeability analysis of scaffolds for bone tissue engineering.
    Dias MR; Fernandes PR; Guedes JM; Hollister SJ
    J Biomech; 2012 Apr; 45(6):938-44. PubMed ID: 22365847
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tissue engineered bone: measurement of nutrient transport in three-dimensional matrices.
    Botchwey EA; Dupree MA; Pollack SR; Levine EM; Laurencin CT
    J Biomed Mater Res A; 2003 Oct; 67(1):357-67. PubMed ID: 14517896
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of macroporous protein scaffolds on bone tissue engineering from bone marrow stem cells.
    Kim HJ; Kim UJ; Vunjak-Novakovic G; Min BH; Kaplan DL
    Biomaterials; 2005 Jul; 26(21):4442-52. PubMed ID: 15701373
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bone marrow stromal cells and their use in regenerating bone.
    Cancedda R; Mastrogiacomo M; Bianchi G; Derubeis A; Muraglia A; Quarto R
    Novartis Found Symp; 2003; 249():133-43; discussion 143-7, 170-4, 239-41. PubMed ID: 12708654
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of pore size on vascularization and tissue remodeling in PEG hydrogels.
    Chiu YC; Cheng MH; Engel H; Kao SW; Larson JC; Gupta S; Brey EM
    Biomaterials; 2011 Sep; 32(26):6045-51. PubMed ID: 21663958
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bone regeneration by grafting of an autogenous cultured bone/ceramic construct.
    Yoshikawa T; Iida J; Ueda Y; Koizumi M; Takakura Y; Nonomura A
    J Biomed Mater Res A; 2003 Dec; 67(4):1437-41. PubMed ID: 14624533
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.