These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 23404127)

  • 1. Phosphogenesis in the 2460 and 2728 million-year-old banded iron formations as evidence for biological cycling of phosphate in the early biosphere.
    Li YL; Sun S; Chan LS
    Ecol Evol; 2012 Jan; 3(1):115-25. PubMed ID: 23404127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Siderophile Elements and Coupled Fe-Os Isotope Signatures in the Temagami Iron Formation, Canada: Possible Signatures of Neoarchean Seawater Chemistry and Earth's Oxygenation History.
    Schulz T; Viehmann S; Hezel DC; Koeberl C; Bau M
    Astrobiology; 2021 Aug; 21(8):924-939. PubMed ID: 34406808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoferrotrophy, deposition of banded iron formations, and methane production in Archean oceans.
    Thompson KJ; Kenward PA; Bauer KW; Warchola T; Gauger T; Martinez R; Simister RL; Michiels CC; Llirós M; Reinhard CT; Kappler A; Konhauser KO; Crowe SA
    Sci Adv; 2019 Nov; 5(11):eaav2869. PubMed ID: 31807693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-phosphorus concentrations and important ferric hydroxide scavenging in Archean seawater.
    Rego ES; Busigny V; Lalonde SV; Rossignol C; Babinski M; Philippot P
    PNAS Nexus; 2023 Mar; 2(3):pgad025. PubMed ID: 36909825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fossilized iron bacteria reveal a pathway to the biological origin of banded iron formation.
    Chi Fru E; Ivarsson M; Kilias SP; Bengtson S; Belivanova V; Marone F; Fortin D; Broman C; Stampanoni M
    Nat Commun; 2013; 4():2050. PubMed ID: 23784372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Was there really an Archean phosphate crisis?
    Konhauser KO; Lalonde SV; Amskold L; Holland HD
    Science; 2007 Mar; 315(5816):1234. PubMed ID: 17332403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climate control on banded iron formations linked to orbital eccentricity.
    Lantink ML; Davies JHFL; Mason PRD; Schaltegger U; Hilgen FJ
    Nat Geosci; 2019 May; 12(5):369-374. PubMed ID: 31105765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radical change in tectonic regime and paleo-environment at the end of Neoarchean evidenced by a unique metal co-existing deposit.
    Zhai M
    Sci Bull (Beijing); 2022 Dec; 67(23):2438-2448. PubMed ID: 36566067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A billion-year shift in the formation of Earth's largest ore deposits.
    Courtney-Davies L; Fiorentini M; Dalstra H; Hagemann S; Ramanaidou E; Danišik M; Evans NJ; Rankenburg K; McInnes BIA
    Proc Natl Acad Sci U S A; 2024 Jul; 121(31):e2405741121. PubMed ID: 39042687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial diversity and iron oxidation at Okuoku-hachikurou Onsen, a Japanese hot spring analog of Precambrian iron formations.
    Ward LM; Idei A; Terajima S; Kakegawa T; Fischer WW; McGlynn SE
    Geobiology; 2017 Nov; 15(6):817-835. PubMed ID: 29035022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hexagonal platelet-like magnetite as a biosignature of thermophilic iron-reducing bacteria and its applications to the exploration of the modern deep, hot biosphere and the emergence of iron-reducing bacteria in early precambrian oceans.
    Li YL
    Astrobiology; 2012 Dec; 12(12):1100-8. PubMed ID: 23145573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biogeochemistry of dihydrogen (H2).
    Hoehler TM
    Met Ions Biol Syst; 2005; 43():9-48. PubMed ID: 16370113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The onset of widespread marine red beds and the evolution of ferruginous oceans.
    Song H; Jiang G; Poulton SW; Wignall PB; Tong J; Song H; An Z; Chu D; Tian L; She Z; Wang C
    Nat Commun; 2017 Aug; 8(1):399. PubMed ID: 28855507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The evolution of the marine phosphate reservoir.
    Planavsky NJ; Rouxel OJ; Bekker A; Lalonde SV; Konhauser KO; Reinhard CT; Lyons TW
    Nature; 2010 Oct; 467(7319):1088-90. PubMed ID: 20981096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of the global phosphorus cycle.
    Reinhard CT; Planavsky NJ; Gill BC; Ozaki K; Robbins LJ; Lyons TW; Fischer WW; Wang C; Cole DB; Konhauser KO
    Nature; 2017 Jan; 541(7637):386-389. PubMed ID: 28002400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geochemical Characteristics of Trace Elements and Mineralization Model of the Ediacaran-Early Cambrian Phosphorites, South China.
    Zhang L; Zhang M; Zhu G
    ACS Omega; 2024 Mar; 9(12):13483-13493. PubMed ID: 38559950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subducted banded iron formations as a source of ultralow-velocity zones at the core-mantle boundary.
    Dobson DP; Brodholt JP
    Nature; 2005 Mar; 434(7031):371-4. PubMed ID: 15772658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Onset of the aerobic nitrogen cycle during the Great Oxidation Event.
    Zerkle AL; Poulton SW; Newton RJ; Mettam C; Claire MW; Bekker A; Junium CK
    Nature; 2017 Feb; 542(7642):465-467. PubMed ID: 28166535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides.
    Bjerrum CJ; Canfield DE
    Nature; 2002 May; 417(6885):159-62. PubMed ID: 12000956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A case study for late Archean and Proterozoic biogeochemical iron- and sulphur cycling in a modern habitat-the Arvadi Spring.
    Koeksoy E; Halama M; Hagemann N; Weigold PR; Laufer K; Kleindienst S; Byrne JM; Sundman A; Hanselmann K; Halevy I; Schoenberg R; Konhauser KO; Kappler A
    Geobiology; 2018 Jul; 16(4):353-368. PubMed ID: 29885273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.