BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1933 related articles for article (PubMed ID: 2340414)

  • 1. Binocularity in the little owl, Athene noctua. II. Properties of visually evoked potentials from the Wulst in response to monocular and binocular stimulation with sine wave gratings.
    Porciatti V; Fontanesi G; Raffaelli A; Bagnoli P
    Brain Behav Evol; 1990; 35(1):40-8. PubMed ID: 2340414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binocularity in the little owl, Athene noctua. I. Anatomical investigation of the thalamo-Wulst pathway.
    Bagnoli P; Fontanesi G; Casini G; Porciatti V
    Brain Behav Evol; 1990; 35(1):31-9. PubMed ID: 2340413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wulst efferents in the little owl Athene noctua: an investigation of projections to the optic tectum.
    Casini G; Porciatti V; Fontanesi G; Bagnoli P
    Brain Behav Evol; 1992; 39(2):101-15. PubMed ID: 1555108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortical contrast gain control in human spatial vision.
    Bobak P; Bodis-Wollner I; Marx MS
    J Physiol; 1988 Nov; 405():421-37. PubMed ID: 3255797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A VEP measure of the binocular fusion of horizontal and vertical disparities.
    Hale J; Harrad RA; McKee SP; Pettet MW; Norcia AM
    Invest Ophthalmol Vis Sci; 2005 May; 46(5):1786-90. PubMed ID: 15851583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binocular summation improves performance to defocus-induced blur.
    Plainis S; Petratou D; Giannakopoulou T; Atchison DA; Tsilimbaris MK
    Invest Ophthalmol Vis Sci; 2011 Apr; 52(5):2784-9. PubMed ID: 21228386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binocular summation in normal, monocularly deprived, and strabismic cats: visual evoked potentials.
    Sclar G; Ohzawa I; Freeman RD
    Exp Brain Res; 1986; 62(1):1-10. PubMed ID: 3956626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binocular interaction in normal vision studied by pattern-reversal visual evoked potential (PR-VEPS).
    di Summa A; Polo A; Tinazzi M; Zanette G; Bertolasi L; Bongiovanni LG; Fiaschi A
    Ital J Neurol Sci; 1997 Apr; 18(2):81-6. PubMed ID: 9239527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of binocular interaction in refraction errors: study using pattern-reversal visual evoked potentials.
    di Summa A; Fusina S; Bertolasi L; Vicentini S; Perlini S; Bongiovanni LG; Polo A
    Doc Ophthalmol; 1999; 98(2):139-51. PubMed ID: 10947000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monocular and binocular steady-state flicker VEPs: frequency-response functions to sinusoidal and square-wave luminance modulation.
    Nicol DS; Hamilton R; Shahani U; McCulloch DL
    Doc Ophthalmol; 2011 Feb; 122(1):63-70. PubMed ID: 21279419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of attention on the VEP in binocular and monocular conditions.
    Heravian-Shandiz J; Douthwaite WA; Jenkins TC
    Ophthalmic Physiol Opt; 1992 Oct; 12(4):437-42. PubMed ID: 1293531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binocular VEP summation in infants and adults with abnormal binocular histories.
    Shea SL; Aslin RN; McCulloch D
    Invest Ophthalmol Vis Sci; 1987 Feb; 28(2):356-65. PubMed ID: 8591919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binocular interaction in the VEP to grating stimulation. II. Spatial frequency effects.
    Jakobsson P; Lennerstrand G
    Acta Ophthalmol (Copenh); 1985 Jun; 63(3):290-6. PubMed ID: 4036559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Responses of pigeon vestibulocerebellar neurons to optokinetic stimulation. I. Functional organization of neurons discriminating between translational and rotational visual flow.
    Wylie DR; Kripalani T; Frost BJ
    J Neurophysiol; 1993 Dec; 70(6):2632-46. PubMed ID: 8120603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monocular and binocular neuronal activity in human visual cortex revealed by electrical brain activity mapping.
    Skrandies W
    Exp Brain Res; 1993; 93(3):516-20. PubMed ID: 8519340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of induced fixation disparity by negative lenses on the visually evoked potential wave.
    Heravian-Shandiz J; Douthwaite WA; Jenkins TC
    Ophthalmic Physiol Opt; 1993 Jul; 13(3):295-8. PubMed ID: 8265171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tonic interocular suppression, binocular summation, and the visual evoked potential.
    Eysteinsson T; Barris MC; Denny N; Frumkes TE
    Invest Ophthalmol Vis Sci; 1993 Jul; 34(8):2443-8. PubMed ID: 8325752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual evoked potentials to red-green stimulation in schoolchildren.
    Pompe MT; Kranjc BS; Brecelj J
    Vis Neurosci; 2006; 23(3-4):447-51. PubMed ID: 16961979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binocular spatial phase tuning characteristics of neurons in the macaque striate cortex.
    Smith EL; Chino YM; Ni J; Ridder WH; Crawford ML
    J Neurophysiol; 1997 Jul; 78(1):351-65. PubMed ID: 9242285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical period for the monocular deprivation effect in rats: assessment with sweep visually evoked potentials.
    Guire ES; Lickey ME; Gordon B
    J Neurophysiol; 1999 Jan; 81(1):121-8. PubMed ID: 9914273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 97.