These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 23404159)

  • 21. The importance of modulatory input for V1 activity and perception.
    Paradiso MA; MacEvoy SP; Huang X; Blau S
    Prog Brain Res; 2005; 149():257-67. PubMed ID: 16226589
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Input-output transformation in the visuo-oculomotor loop: comparison of real-time optical imaging recordings in V1 to ocular following responses upon center-surround stimulation.
    Reynaud A; Barthélemy FV; Masson GS; Chavane F
    Arch Ital Biol; 2007 Nov; 145(3-4):251-62. PubMed ID: 18075119
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adaptive coding of visual information in neural populations.
    Gutnisky DA; Dragoi V
    Nature; 2008 Mar; 452(7184):220-4. PubMed ID: 18337822
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neural responses in the macaque v1 to bar stimuli with various lengths presented on the blind spot.
    Matsumoto M; Komatsu H
    J Neurophysiol; 2005 May; 93(5):2374-87. PubMed ID: 15634711
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcranial alternating stimulation in a high gamma frequency range applied over V1 improves contrast perception but does not modulate spatial attention.
    Laczó B; Antal A; Niebergall R; Treue S; Paulus W
    Brain Stimul; 2012 Oct; 5(4):484-91. PubMed ID: 21962982
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distinct contrast response functions in striate and extra-striate regions of visual cortex revealed with magnetoencephalography (MEG).
    Hall SD; Holliday IE; Hillebrand A; Furlong PL; Singh KD; Barnes GR
    Clin Neurophysiol; 2005 Jul; 116(7):1716-22. PubMed ID: 15953561
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Masking interrupts figure-ground signals in V1.
    Lamme VA; Zipser K; Spekreijse H
    J Cogn Neurosci; 2002 Oct; 14(7):1044-53. PubMed ID: 12419127
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spatiotemporal dynamics and connectivity pattern differences between centrally and peripherally presented faces.
    Liu L; Ioannides AA
    Neuroimage; 2006 Jul; 31(4):1726-40. PubMed ID: 16564185
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Trial-to-trial variability of spike response of V1 and saccadic response time.
    Lee J; Kim HR; Lee C
    J Neurophysiol; 2010 Nov; 104(5):2556-72. PubMed ID: 20810695
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Parvocellular and magnocellular contributions to the initial generators of the visual evoked potential: high-density electrical mapping of the "C1" component.
    Foxe JJ; Strugstad EC; Sehatpour P; Molholm S; Pasieka W; Schroeder CE; McCourt ME
    Brain Topogr; 2008 Sep; 21(1):11-21. PubMed ID: 18784997
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spatiotemporal profiles of visual processing with and without primary visual cortex.
    Ioannides AA; Poghosyan V; Liu L; Saridis GA; Tamietto M; Op de Beeck M; De Tiège X; Weiskrantz L; de Gelder B
    Neuroimage; 2012 Nov; 63(3):1464-77. PubMed ID: 22877580
    [TBL] [Abstract][Full Text] [Related]  

  • 32. BOLD response to spatial phase congruency in human brain.
    Perna A; Tosetti M; Montanaro D; Morrone MC
    J Vis; 2008 Dec; 8(10):15.1-15. PubMed ID: 19146357
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The "silent" surround of V1 receptive fields: theory and experiments.
    Seriès P; Lorenceau J; Frégnac Y
    J Physiol Paris; 2003; 97(4-6):453-74. PubMed ID: 15242657
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surround modulation of neuronal responses in V1 is as stable over time as responses to direct stimulation of receptive fields.
    Paşca SP; Singer W; Nikolić D
    Cortex; 2010 Oct; 46(9):1199-203. PubMed ID: 20557882
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Animation of natural scene by virtual eye-movements evokes high precision and low noise in V1 neurons.
    Baudot P; Levy M; Marre O; Monier C; Pananceau M; Frégnac Y
    Front Neural Circuits; 2013; 7():206. PubMed ID: 24409121
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Correspondence of visual evoked potentials with FMRI signals in human visual cortex.
    Whittingstall K; Wilson D; Schmidt M; Stroink G
    Brain Topogr; 2008 Dec; 21(2):86-92. PubMed ID: 18841455
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Orientation tuning of surround suppression in lateral geniculate nucleus and primary visual cortex of cat.
    Naito T; Sadakane O; Okamoto M; Sato H
    Neuroscience; 2007 Nov; 149(4):962-75. PubMed ID: 17945429
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Contrast normalization contributes to a biologically-plausible model of receptive-field development in primary visual cortex (V1).
    Willmore BD; Bulstrode H; Tolhurst DJ
    Vision Res; 2012 Feb; 54(5-2):49-60. PubMed ID: 22230381
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Induced Gamma activity in primary visual cortex is related to luminance and not color contrast: An MEG study.
    Adjamian P; Hadjipapas A; Barnes GR; Hillebrand A; Holliday IE
    J Vis; 2008 May; 8(7):4.1-7. PubMed ID: 19146237
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatial Correlations in Natural Scenes Modulate Response Reliability in Mouse Visual Cortex.
    Rikhye RV; Sur M
    J Neurosci; 2015 Oct; 35(43):14661-80. PubMed ID: 26511254
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.