BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 23404580)

  • 1. Genomic and phenotypic profiles of two Brazilian breast cancer cell lines derived from primary human tumors.
    Corrêa NC; Kuasne H; Faria JA; Seixas CC; Santos IG; Abreu FB; Nonogaki S; Rocha RM; Aparecida Borges Silva G; Gobbi H; Rogatto SR; Goes AM; Gomes DA
    Oncol Rep; 2013 Apr; 29(4):1299-307. PubMed ID: 23404580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic analysis reveals stage-specific reprogramed metabolism for the primary breast cancer cell lines MGSO-3 and MACL-1.
    Braga FHG; Gómez-Mendoza DP; Lemos RP; Rodrigues-Ribeiro L; Raíssa-Oliveira B; Rodrigues ALP; Gorshkov V; Kjeldsen F; Cruz JS; Verano-Braga T
    Proteomics; 2022 Sep; 22(17):e2200095. PubMed ID: 35666001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of cell lines derived from breast cancers and normal mammary tissues for the study of the intrinsic molecular subtypes.
    Prat A; Karginova O; Parker JS; Fan C; He X; Bixby L; Harrell JC; Roman E; Adamo B; Troester M; Perou CM
    Breast Cancer Res Treat; 2013 Nov; 142(2):237-55. PubMed ID: 24162158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Landscape of somatic allelic imbalances and copy number alterations in HER2-amplified breast cancer.
    Staaf J; Jönsson G; Ringnér M; Baldetorp B; Borg A
    Breast Cancer Res; 2011; 13(6):R129. PubMed ID: 22169037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro activity of the mTOR inhibitor everolimus, in a large panel of breast cancer cell lines and analysis for predictors of response.
    Hurvitz SA; Kalous O; Conklin D; Desai AJ; Dering J; Anderson L; O'Brien NA; Kolarova T; Finn RS; Linnartz R; Chen D; Slamon DJ
    Breast Cancer Res Treat; 2015 Feb; 149(3):669-80. PubMed ID: 25663547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple breast cancer cell-lines derived from a single tumor differ in their molecular characteristics and tumorigenic potential.
    Mosoyan G; Nagi C; Marukian S; Teixeira A; Simonian A; Resnick-Silverman L; DiFeo A; Johnston D; Reynolds SR; Roses DF; Mosoian A
    PLoS One; 2013; 8(1):e55145. PubMed ID: 23372829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular profiling and characterization of luminal-like and basal-like in vivo breast cancer xenograft models.
    Bergamaschi A; Hjortland GO; Triulzi T; Sørlie T; Johnsen H; Ree AH; Russnes HG; Tronnes S; Maelandsmo GM; Fodstad O; Borresen-Dale AL; Engebraaten O
    Mol Oncol; 2009 Dec; 3(5-6):469-82. PubMed ID: 19713161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of the CK-MB-1 trastuzumab-resistant HER2-positive breast cancer cell line and xenograft animal models.
    Chung WP; Huang WL; Liao WA; Huang WL; Liu YY; Su WC
    Cancer Med; 2021 Apr; 10(7):2370-2379. PubMed ID: 33665980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Establishment of two basal-like breast cancer cell lines with extremely low tumorigenicity from Taiwanese premenopausal women.
    Kuo WL; Ueng SH; Wu CH; Lee LY; Lee YS; Yu MC; Chen SC; Yu CC; Tsai CN
    Hum Cell; 2018 Apr; 31(2):154-166. PubMed ID: 29484537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery.
    Kao J; Salari K; Bocanegra M; Choi YL; Girard L; Gandhi J; Kwei KA; Hernandez-Boussard T; Wang P; Gazdar AF; Minna JD; Pollack JR
    PLoS One; 2009 Jul; 4(7):e6146. PubMed ID: 19582160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Establishment and characterization of MACL-1 and MGSO-3 cell lines derived from human primary breast cancer.
    Correa CR; Bertollo CM; Goes AM
    Oncol Res; 2009; 17(10):473-82. PubMed ID: 19725227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Xenografts faithfully recapitulate breast cancer-specific gene expression patterns of parent primary breast tumors.
    Petrillo LA; Wolf DM; Kapoun AM; Wang NJ; Barczak A; Xiao Y; Korkaya H; Baehner F; Lewicki J; Wicha M; Park JW; Spellman PT; Gray JW; Van't Veer L; Esserman LJ
    Breast Cancer Res Treat; 2012 Oct; 135(3):913-22. PubMed ID: 22941572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silencing of HSulf-2 expression in MCF10DCIS.com cells attenuate ductal carcinoma in situ progression to invasive ductal carcinoma in vivo.
    Khurana A; McKean H; Kim H; Kim SH; mcguire J; Roberts LR; Goetz MP; Shridhar V
    Breast Cancer Res; 2012 Mar; 14(2):R43. PubMed ID: 22410125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New generation breast cancer cell lines developed from patient-derived xenografts.
    Finlay-Schultz J; Jacobsen BM; Riley D; Paul KV; Turner S; Ferreira-Gonzalez A; Harrell JC; Kabos P; Sartorius CA
    Breast Cancer Res; 2020 Jun; 22(1):68. PubMed ID: 32576280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive comparison of molecular portraits between cell lines and tumors in breast cancer.
    Jiang G; Zhang S; Yazdanparast A; Li M; Pawar AV; Liu Y; Inavolu SM; Cheng L
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):525. PubMed ID: 27556158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breast cancer cell lines carry cell line-specific genomic alterations that are distinct from aberrations in breast cancer tissues: comparison of the CGH profiles between cancer cell lines and primary cancer tissues.
    Tsuji K; Kawauchi S; Saito S; Furuya T; Ikemoto K; Nakao M; Yamamoto S; Oka M; Hirano T; Sasaki K
    BMC Cancer; 2010 Jan; 10():15. PubMed ID: 20070913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of response to endocrine therapy in a panel of human luminal breast cancer xenografts.
    Cottu P; Marangoni E; Assayag F; de Cremoux P; Vincent-Salomon A; Guyader Ch; de Plater L; Elbaz C; Karboul N; Fontaine JJ; Chateau-Joubert S; Boudou-Rouquette P; Alran S; Dangles-Marie V; Gentien D; Poupon MF; Decaudin D
    Breast Cancer Res Treat; 2012 Jun; 133(2):595-606. PubMed ID: 22002565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patient-derived luminal breast cancer xenografts retain hormone receptor heterogeneity and help define unique estrogen-dependent gene signatures.
    Kabos P; Finlay-Schultz J; Li C; Kline E; Finlayson C; Wisell J; Manuel CA; Edgerton SM; Harrell JC; Elias A; Sartorius CA
    Breast Cancer Res Treat; 2012 Sep; 135(2):415-32. PubMed ID: 22821401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cooperation of neurotrophin receptor TrkB and Her2 in breast cancer cells facilitates brain metastases.
    Choy C; Ansari KI; Neman J; Hsu S; Duenas MJ; Li H; Vaidehi N; Jandial R
    Breast Cancer Res; 2017 Apr; 19(1):51. PubMed ID: 28446206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of genomic alterations in radiation-associated breast cancer among childhood cancer survivors, using comparative genomic hybridization (CGH) arrays.
    Yang XR; Killian JK; Hammond S; Burke LS; Bennett H; Wang Y; Davis SR; Strong LC; Neglia J; Stovall M; Weathers RE; Robison LL; Bhatia S; Mabuchi K; Inskip PD; Meltzer P
    PLoS One; 2015; 10(3):e0116078. PubMed ID: 25764003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.