BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 23404705)

  • 1. In vivo optical trapping indicates kinesin's stall force is reduced by dynein during intracellular transport.
    Blehm BH; Schroer TA; Trybus KM; Chemla YR; Selvin PR
    Proc Natl Acad Sci U S A; 2013 Feb; 110(9):3381-6. PubMed ID: 23404705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effectiveness of a dynein team in a tug of war helped by reduced load sensitivity of detachment: evidence from the study of bidirectional endosome transport in D. discoideum.
    Bhat D; Gopalakrishnan M
    Phys Biol; 2012 Aug; 9(4):046003. PubMed ID: 22733140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tau directs intracellular trafficking by regulating the forces exerted by kinesin and dynein teams.
    Chaudhary AR; Berger F; Berger CL; Hendricks AG
    Traffic; 2018 Feb; 19(2):111-121. PubMed ID: 29077261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Building complexity: an in vitro study of cytoplasmic dynein with in vivo implications.
    Mallik R; Petrov D; Lex SA; King SJ; Gross SP
    Curr Biol; 2005 Dec; 15(23):2075-85. PubMed ID: 16332532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Force production of human cytoplasmic dynein is limited by its processivity.
    Brenner S; Berger F; Rao L; Nicholas MP; Gennerich A
    Sci Adv; 2020 Apr; 6(15):eaaz4295. PubMed ID: 32285003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Load-dependent detachment kinetics plays a key role in bidirectional cargo transport by kinesin and dynein.
    Ohashi KG; Han L; Mentley B; Wang J; Fricks J; Hancock WO
    Traffic; 2019 Apr; 20(4):284-294. PubMed ID: 30809891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force measurements on cargoes in living cells reveal collective dynamics of microtubule motors.
    Hendricks AG; Holzbaur EL; Goldman YE
    Proc Natl Acad Sci U S A; 2012 Nov; 109(45):18447-52. PubMed ID: 23091040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring molecular motor forces in vivo: implications for tug-of-war models of bidirectional transport.
    Leidel C; Longoria RA; Gutierrez FM; Shubeita GT
    Biophys J; 2012 Aug; 103(3):492-500. PubMed ID: 22947865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineered Tug-of-War Between Kinesin and Dynein Controls Direction of Microtubule Based Transport In Vivo.
    Rezaul K; Gupta D; Semenova I; Ikeda K; Kraikivski P; Yu J; Cowan A; Zaliapin I; Rodionov V
    Traffic; 2016 May; 17(5):475-86. PubMed ID: 26843027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tug-of-war between dissimilar teams of microtubule motors regulates transport and fission of endosomes.
    Soppina V; Rai AK; Ramaiya AJ; Barak P; Mallik R
    Proc Natl Acad Sci U S A; 2009 Nov; 106(46):19381-6. PubMed ID: 19864630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytoplasmic dynein-associated structures move bidirectionally in vivo.
    Ma S; Chisholm RL
    J Cell Sci; 2002 Apr; 115(Pt 7):1453-60. PubMed ID: 11896193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mammalian dynein-dynactin complex is a strong opponent to kinesin in a tug-of-war competition.
    Belyy V; Schlager MA; Foster H; Reimer AE; Carter AP; Yildiz A
    Nat Cell Biol; 2016 Sep; 18(9):1018-24. PubMed ID: 27454819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing dynein and kinesin stepping with mechanical manipulation in a living cell.
    Sims PA; Xie XS
    Chemphyschem; 2009 Jul; 10(9-10):1511-6. PubMed ID: 19504528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Effect of Temperature on Microtubule-Based Transport by Cytoplasmic Dynein and Kinesin-1 Motors.
    Hong W; Takshak A; Osunbayo O; Kunwar A; Vershinin M
    Biophys J; 2016 Sep; 111(6):1287-1294. PubMed ID: 27653487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Processive Kinesin-14 HSET Exhibits Directional Flexibility Depending on Motor Traffic.
    Reinemann DN; Norris SR; Ohi R; Lang MJ
    Curr Biol; 2018 Jul; 28(14):2356-2362.e5. PubMed ID: 30017484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Caenorhabditis elegans JIP3 protein UNC-16 functions as an adaptor to link kinesin-1 with cytoplasmic dynein.
    Arimoto M; Koushika SP; Choudhary BC; Li C; Matsumoto K; Hisamoto N
    J Neurosci; 2011 Feb; 31(6):2216-24. PubMed ID: 21307258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal cooperativity of motor proteins under constant force: insights from Kramers' escape problem.
    Srinivas B; Gopalakrishnan M
    Phys Biol; 2018 Dec; 16(1):016006. PubMed ID: 30524046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular adaptations allow dynein to generate large collective forces inside cells.
    Rai AK; Rai A; Ramaiya AJ; Jha R; Mallik R
    Cell; 2013 Jan; 152(1-2):172-82. PubMed ID: 23332753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directional instability of microtubule transport in the presence of kinesin and dynein, two opposite polarity motor proteins.
    Vale RD; Malik F; Brown D
    J Cell Biol; 1992 Dec; 119(6):1589-96. PubMed ID: 1469050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Force-induced bidirectional stepping of cytoplasmic dynein.
    Gennerich A; Carter AP; Reck-Peterson SL; Vale RD
    Cell; 2007 Nov; 131(5):952-65. PubMed ID: 18045537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.