These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 23404826)

  • 1. Enantioselective separation on naturally chiral metal surfaces: D,L-aspartic acid on Cu(3,1,17)(R&S) surfaces.
    Yun Y; Gellman AJ
    Angew Chem Int Ed Engl; 2013 Mar; 52(12):3394-7. PubMed ID: 23404826
    [No Abstract]   [Full Text] [Related]  

  • 2. Enantioselective separation on a naturally chiral surface.
    Horvath JD; Koritnik A; Kamakoti P; Sholl DS; Gellman AJ
    J Am Chem Soc; 2004 Nov; 126(45):14988-94. PubMed ID: 15535728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enantiospecific Adsorption of Amino Acids on Naturally Chiral Cu{3,1,17}R&S Surfaces.
    Yun Y; Gellman AJ
    Langmuir; 2015 Jun; 31(22):6055-63. PubMed ID: 25933641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enantiospecific desorption of R- and S-propylene oxide from D- or L-lysine modified Cu(100) surfaces.
    Cheong WY; Gellman AJ
    Langmuir; 2012 Oct; 28(43):15251-62. PubMed ID: 23020648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superenantioselective chiral surface explosions.
    Gellman AJ; Huang Y; Feng X; Pushkarev VV; Holsclaw B; Mhatre BS
    J Am Chem Soc; 2013 Dec; 135(51):19208-14. PubMed ID: 24261645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enantioselective surface chemistry of R-2-bromobutane on Cu(643)R&S and Cu(531)R&S.
    Rampulla DM; Francis AJ; Knight KS; Gellman AJ
    J Phys Chem B; 2006 Jun; 110(21):10411-20. PubMed ID: 16722747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enantiospecific equilibrium adsorption and chemistry of d-/l-proline mixtures on chiral and achiral Cu surfaces.
    Dutta S; Gellman AJ
    Chirality; 2020 Feb; 32(2):200-214. PubMed ID: 31762092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enantioselective recognition of amino acid based on electrochemical deposition and X-ray diffraction technology.
    Chong H; Zhang G; Wu Y; Xu B; Wang G; Wang C
    J Inorg Biochem; 2021 May; 218():111398. PubMed ID: 33684685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enantiospecific electrodeposition of chiral CuO films on single-crystal Cu(111).
    Bohannan EW; Kothari HM; Nicic IM; Switzer JA
    J Am Chem Soc; 2004 Jan; 126(2):488-9. PubMed ID: 14719945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chiral ligand exchange potentiometric aspartic acid sensors with polysiloxane films containing a chiral ligand N-carbobenzoxy-aspartic acid.
    Zhou Y; Nagaoka T; Yu B; Levon K
    Anal Chem; 2009 Mar; 81(5):1888-92. PubMed ID: 19186987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing enantioselectivity on chirally modified Cu(110), Cu(100), and Cu(111) surfaces.
    Cheong WY; Huang Y; Dangaria N; Gellman AJ
    Langmuir; 2010 Nov; 26(21):16412-23. PubMed ID: 20973584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enantiospecific desorption of chiral compounds from chiral Cu(643) and achiral Cu(111) surfaces.
    Horvath JD; Gellman AJ
    J Am Chem Soc; 2002 Mar; 124(10):2384-92. PubMed ID: 11878996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics and Mechanism of Aspartic Acid Adsorption and Its Explosive Decomposition on Cu(100).
    Karagoz B; Reinicker A; Gellman AJ
    Langmuir; 2019 Feb; 35(8):2925-2933. PubMed ID: 30681872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supramolecular assembly of strongly chemisorbed size- and shape-defined chiral clusters: S- and R-alanine on Cu(110).
    Barlow SM; Louafi S; Le Roux D; Williams J; Muryn C; Haq S; Raval R
    Langmuir; 2004 Aug; 20(17):7171-6. PubMed ID: 15301502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The study of adsorption of L-aspartic acid on silver sol by surface-enhanced Raman scattering].
    Zhu ZL; Gao JY; Li FT; Zhang BR
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Jan; 24(1):68-70. PubMed ID: 15768979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of homochirality in achiral enantiomorphous monolayers.
    Parschau M; Romer S; Ernst KH
    J Am Chem Soc; 2004 Dec; 126(47):15398-9. PubMed ID: 15563164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An investigation of Cu(II) adsorption by raw and acid-activated bentonite: a combined potentiometric, thermodynamic, XRD, IR, DTA study.
    Eren E; Afsin B
    J Hazard Mater; 2008 Mar; 151(2-3):682-91. PubMed ID: 17644249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structures of dense glycine and alanine adlayers on chiral Cu(3,1,17) surfaces.
    Rankin RB; Sholl DS
    Langmuir; 2006 Sep; 22(19):8096-103. PubMed ID: 16952247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Switchable Chiral Selection of Aspartic Acids by Dynamic States of Brushite.
    Jiang W; Pan H; Zhang Z; Qiu SR; Kim JD; Xu X; Tang R
    J Am Chem Soc; 2017 Jun; 139(25):8562-8569. PubMed ID: 28590728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. L- and D-proline thiosemicarbazone conjugates: coordination behavior in solution and the effect of copper(II) coordination on their antiproliferative activity.
    Milunovic MN; Enyedy É; Nagy NV; Kiss T; Trondl R; Jakupec MA; Keppler BK; Krachler R; Novitchi G; Arion VB
    Inorg Chem; 2012 Sep; 51(17):9309-21. PubMed ID: 22889304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.