These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 23404905)

  • 21. Microstructure, hardness, corrosion resistance and porcelain shear bond strength comparison between cast and hot pressed CoCrMo alloy for metal-ceramic dental restorations.
    Henriques B; Soares D; Silva FS
    J Mech Behav Biomed Mater; 2012 Aug; 12():83-92. PubMed ID: 22659369
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of the fabrication process and fluoride content on the tribocorrosion behaviour of Ti6Al4V biomedical alloy in artificial saliva.
    Licausi MP; Igual Muñoz A; Amigó Borrás V
    J Mech Behav Biomed Mater; 2013 Apr; 20():137-48. PubMed ID: 23455170
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A metallic biomaterial tribocorrosion model linking fretting mechanics, currents, and potentials: Model development and experimental comparison.
    Gilbert JL; Zhu D
    J Biomed Mater Res B Appl Biomater; 2020 Nov; 108(8):3174-3189. PubMed ID: 32537879
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Negative influence of biofilm on CoCrMo corrosion.
    Chuang PJ; Swaminathan V; Pavlovsky L; Marquez-Catral L; Jones DL; Song L
    J Biomed Mater Res A; 2019 Nov; 107(11):2556-2566. PubMed ID: 31355999
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A mass balance analysis of the tribocorrosion process of titanium alloys using a single micro-asperity: Voltage and solution effects on plastic deformation, oxide repassivation, and ion dissolution.
    Mace A; Gilbert JL
    J Mech Behav Biomed Mater; 2022 Dec; 136():105531. PubMed ID: 36308875
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interfacial compliance, energy dissipation, frequency effects, and long-term fretting corrosion performance of Ti-6Al-4V/CoCrMo interfaces.
    Smith SM; Gilbert JL
    J Biomed Mater Res A; 2022 Feb; 110(2):409-423. PubMed ID: 34402604
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low cycle fretting and fretting corrosion properties of low carbon CoCrMo and additively manufactured CoCrMoW alloys for dental and orthopedic applications.
    Mace A; Gilbert JL
    J Biomed Mater Res B Appl Biomater; 2023 Sep; 111(9):1600-1613. PubMed ID: 37081711
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differences in the fretting corrosion of metal-metal and ceramic-metal modular junctions of total hip replacements.
    Hallab NJ; Messina C; Skipor A; Jacobs JJ
    J Orthop Res; 2004 Mar; 22(2):250-9. PubMed ID: 15013082
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hip implant modular junction: The role of CoCrMo alloy microstructure on fretting-corrosion.
    Manthe J; Cheng KY; Bijukumar D; Barba M; Pourzal R; Neto M; Mathew MT
    J Mech Behav Biomed Mater; 2022 Oct; 134():105402. PubMed ID: 36041275
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fretting corrosion of CoCr alloy: Effect of load and displacement on the degradation mechanisms.
    Bryant M; Neville A
    Proc Inst Mech Eng H; 2017 Feb; 231(2):114-126. PubMed ID: 28233505
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fretting corrosion behaviour of ball-and-socket joint on dental implants with different prosthodontic alloys.
    Gil FJ; Canedo R; Padrós A; Bañeres MV; Arano JM
    Biomed Mater Eng; 2003; 13(1):27-34. PubMed ID: 12652020
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vitro fretting crevice corrosion damage of CoCrMo alloys in phosphate buffered saline: Debris generation, chemistry and distribution.
    Zhu D; Liu Y; Gilbert JL
    Acta Biomater; 2020 Sep; 114():449-459. PubMed ID: 32771589
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of nanotopography on calcium and phosphorus deposition on metallic materials in vitro.
    Ward BC; Webster TJ
    Biomaterials; 2006 Jun; 27(16):3064-74. PubMed ID: 16476478
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CoCrMo metal release in metal-on-highly crosslinked polyethylene hip implants.
    Wang Q; Eltit F; Garbuz D; Duncan C; Masri B; Greidanus N; Wang R
    J Biomed Mater Res B Appl Biomater; 2020 May; 108(4):1213-1228. PubMed ID: 31423745
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of cell-accelerated corrosion (CAC) on the CoCrMo alloy with segregation banding: Hip implant applications.
    Kanniyappan H; Cheng KY; Badhe RV; Neto M; Bijukumar D; Barba M; Pourzal R; Mathew M
    J Mech Behav Biomed Mater; 2024 Apr; 152():106449. PubMed ID: 38387118
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Voltage and wear debris from Ti-6Al-4V interact to affect cell viability during in-vitro fretting corrosion.
    Hui T; Kubacki GW; Gilbert JL
    J Biomed Mater Res A; 2018 Jan; 106(1):160-167. PubMed ID: 28884489
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro assessment of strength, fatigue durability, and disassembly of Ti6Al4V and CoCrMo necks in modular total hip replacements.
    Nganbe M; Khan U; Louati H; Speirs A; Beaulé PE
    J Biomed Mater Res B Appl Biomater; 2011 Apr; 97(1):132-8. PubMed ID: 21290591
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of alloying elements on the corrosion stability of CoCrMo implant alloy in Hank's solution.
    Metikos-Huković M; Pilić Z; Babić R; Omanović D
    Acta Biomater; 2006 Nov; 2(6):693-700. PubMed ID: 16884967
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An assessment of biomedical CoCrMo alloy fabricated by direct metal laser sintering technique for implant applications.
    de Castro Girão D; Béreš M; Jardini AL; Filho RM; Silva CC; de Siervo A; Gomes de Abreu HF; Araújo WS
    Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110305. PubMed ID: 31761221
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fretting initiated crevice corrosion of 316LVM stainless steel in physiological phosphate buffered saline: Potential and cycles to initiation.
    Liu Y; Zhu D; Pierre D; Gilbert JL
    Acta Biomater; 2019 Oct; 97():565-577. PubMed ID: 31374339
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.