These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 23404905)

  • 41. Microvascular response of striated muscle to common arthroplasty-alloys: A comparative in vivo study with CoCrMo, Ti-6Al-4V, and Ti-6Al-7Nb.
    Kraft CN; Burian B; Diedrich O; Gessmann J; Wimmer MA; Pennekamp PH
    J Biomed Mater Res A; 2005 Oct; 75(1):31-40. PubMed ID: 16078208
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Corrosion behavior of a low modulus beta-Ti-45%Nb alloy for use in medical implants.
    Godley R; Starosvetsky D; Gotman I
    J Mater Sci Mater Med; 2006 Jan; 17(1):63-7. PubMed ID: 16389473
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of the environment on wear ranking and corrosion of biomedical CoCrMo alloys.
    Muñoz AI; Mischler S
    J Mater Sci Mater Med; 2011 Mar; 22(3):437-50. PubMed ID: 21221728
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Low cycle fretting and fretting corrosion properties of low carbon CoCrMo and additively manufactured CoCrMoW alloys for dental and orthopedic applications.
    Mace A; Gilbert JL
    J Biomed Mater Res B Appl Biomater; 2023 Sep; 111(9):1600-1613. PubMed ID: 37081711
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The effect of simulated inflammatory conditions and Fenton chemistry on the electrochemistry of CoCrMo alloy.
    Liu Y; Gilbert JL
    J Biomed Mater Res B Appl Biomater; 2018 Jan; 106(1):209-220. PubMed ID: 28117942
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Friction, lubrication, and polymer transfer between UHMWPE and CoCrMo hip-implant materials: a fluorescence microscopy study.
    Crockett R; Roba M; Naka M; Gasser B; Delfosse D; Frauchiger V; Spencer ND
    J Biomed Mater Res A; 2009 Jun; 89(4):1011-8. PubMed ID: 18478550
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In vivo severe corrosion and hydrogen embrittlement of retrieved modular body titanium alloy hip-implants.
    Rodrigues DC; Urban RM; Jacobs JJ; Gilbert JL
    J Biomed Mater Res B Appl Biomater; 2009 Jan; 88(1):206-19. PubMed ID: 18683224
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The influence of contact conditions and micromotions on the fretting behavior of modular titanium alloy taper connections.
    Baxmann M; Jauch SY; Schilling C; Blömer W; Grupp TM; Morlock MM
    Med Eng Phys; 2013 May; 35(5):676-83; discussion 676. PubMed ID: 22940445
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of ceramic conversion treatments on the surface damage and nickel ion release of NiTi alloys under fretting corrosion conditions.
    Dong H; Ju X; Yang H; Qian L; Zhou Z
    J Mater Sci Mater Med; 2008 Feb; 19(2):937-46. PubMed ID: 17665097
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Surface topography, corrosion and microhardness of nitrogen-diffusion-hardened titanium alloy.
    Venugopalan R; George MA; Weimer JJ; Lucas LC
    Biomaterials; 1999 Sep; 20(18):1709-16. PubMed ID: 10503972
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Corrosion resistance of a laser spot-welded joint of NiTi wire in simulated human body fluids.
    Yan XJ; Yang DZ
    J Biomed Mater Res A; 2006 Apr; 77(1):97-102. PubMed ID: 16392124
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microstructure and corrosion behaviour in biological environments of the new forged low-Ni Co-Cr-Mo alloys.
    Hiromoto S; Onodera E; Chiba A; Asami K; Hanawa T
    Biomaterials; 2005 Aug; 26(24):4912-23. PubMed ID: 15769525
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tribo-electrochemical characterization of metallic biomaterials for total joint replacement.
    Diomidis N; Mischler S; More NS; Roy M
    Acta Biomater; 2012 Feb; 8(2):852-9. PubMed ID: 22005332
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Frequency effect in fretting wear of Co-28Cr-6Mo versus Ti-6Al-4V implant alloys.
    Schaaff P; Dalmiglio M; Holzwarth U
    J Biomed Mater Res B Appl Biomater; 2006 Apr; 77(1):79-88. PubMed ID: 16211570
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Alloys Used in Different Temporomandibular Joint Reconstruction Replacement Prostheses Exhibit Variable Microstructures and Electrochemical Properties.
    Neto MQ; Radice S; Hall DJ; Mathew MT; Mercuri LG; Pourzal R
    J Oral Maxillofac Surg; 2022 May; 80(5):798-813. PubMed ID: 35157828
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of carbides and microstructure of CoCrMo alloys on their metallic dissolution resistance.
    Valero-Vidal C; Casabán-Julián L; Herraiz-Cardona I; Igual-Muñoz A
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4667-76. PubMed ID: 24094174
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tribocorrosion behavior of veneering biomedical PEEK to Ti6Al4V structures.
    Sampaio M; Buciumeanu M; Henriques B; Silva FS; Souza JC; Gomes JR
    J Mech Behav Biomed Mater; 2016 Feb; 54():123-30. PubMed ID: 26454136
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Influence of fluoride content and pH on corrosion and tribocorrosion behaviour of Ti13Nb13Zr alloy in oral environment.
    Golvano I; Garcia I; Conde A; Tato W; Aginagalde A
    J Mech Behav Biomed Mater; 2015 Sep; 49():186-96. PubMed ID: 26042765
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In vitro corrosion testing of modular hip tapers.
    Goldberg JR; Gilbert JL
    J Biomed Mater Res B Appl Biomater; 2003 Feb; 64(2):78-93. PubMed ID: 12516082
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reduction of fretting corrosion of Ti-6Al-4V by various surface treatments.
    Maurer AM; Brown SA; Payer JH; Merritt K; Kawalec JS
    J Orthop Res; 1993 Nov; 11(6):865-73. PubMed ID: 8283332
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.