These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 23404991)

  • 1. Modelling temperature, photoperiod and vernalization responses of Brunonia australis (Goodeniaceae) and Calandrinia sp. (Portulacaceae) to predict flowering time.
    Cave RL; Hammer GL; McLean G; Birch CJ; Erwin JE; Johnston ME
    Ann Bot; 2013 Apr; 111(4):629-39. PubMed ID: 23404991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Juvenility and flowering of Brunonia australis (Goodeniaceae) and Calandrinia sp. (Portulacaceae) in relation to vernalization and daylength.
    Cave RL; Birch CJ; Hammer GL; Erwin JE; Johnston ME
    Ann Bot; 2011 Jul; 108(1):215-20. PubMed ID: 21586530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulating the influence of vernalization, photoperiod and optimum temperature on wheat developmental rates.
    McMaster GS; White JW; Hunt LA; Jamieson PD; Dhillon SS; Ortiz-Monasterio JI
    Ann Bot; 2008 Oct; 102(4):561-9. PubMed ID: 18628262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The quantitative response of wheat vernalization to environmental variables indicates that vernalization is not a response to cold temperature.
    Allard V; Veisz O; Kõszegi B; Rousset M; Le Gouis J; Martre P
    J Exp Bot; 2012 Jan; 63(2):847-57. PubMed ID: 21994169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression Patterns of Key Genes in the Photoperiod and Vernalization Flowering Pathways in
    Yan X; Wang LJ; Zhao YQ; Jia GX
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35955483
    [No Abstract]   [Full Text] [Related]  

  • 6. Temperature variation caused by sowing dates significantly affects floral initiation and floral bud differentiation processes in rapeseed (Brassica napus L.).
    Luo T; Zhang J; Khan MN; Liu J; Xu Z; Hu L
    Plant Sci; 2018 Jun; 271():40-51. PubMed ID: 29650156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Major QTLs for critical photoperiod and vernalization underlie extensive variation in flowering in the Mimulus guttatus species complex.
    Friedman J; Willis JH
    New Phytol; 2013 Jul; 199(2):571-583. PubMed ID: 23600522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model analysis of flowering phenology in recombinant inbred lines of barley.
    Yin X; Struik PC; Tang J; Qi C; Liu T
    J Exp Bot; 2005 Mar; 56(413):959-65. PubMed ID: 15689339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flowering responses to light and temperature.
    Li L; Li X; Liu Y; Liu H
    Sci China Life Sci; 2016 Apr; 59(4):403-8. PubMed ID: 26687726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinformatic prediction of transcription factor binding sites at promoter regions of genes for photoperiod and vernalization responses in model and temperate cereal plants.
    Peng FY; Hu Z; Yang RC
    BMC Genomics; 2016 Aug; 17():573. PubMed ID: 27503086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crosstalk in the darkness: bulb vernalization activates meristem transition via circadian rhythm and photoperiodic pathway.
    Ben Michael TE; Faigenboim A; Shemesh-Mayer E; Forer I; Gershberg C; Shafran H; Rabinowitch HD; Kamenetsky-Goldstein R
    BMC Plant Biol; 2020 Feb; 20(1):77. PubMed ID: 32066385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vernalization-induced repression of FLOWERING LOCUS C stimulates flowering in Sinapis alba and enhances plant responsiveness to photoperiod.
    D'Aloia M; Tocquin P; Périlleux C
    New Phytol; 2008; 178(4):755-765. PubMed ID: 18346112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model-based framework for the phenotypic characterization of the flowering of Medicago truncatula.
    Moreau D; Salon C; Munier-Jolain N
    Plant Cell Environ; 2007 Feb; 30(2):213-24. PubMed ID: 17238912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular basis of age-dependent vernalization in Cardamine flexuosa.
    Zhou CM; Zhang TQ; Wang X; Yu S; Lian H; Tang H; Feng ZY; Zozomova-Lihová J; Wang JW
    Science; 2013 May; 340(6136):1097-100. PubMed ID: 23723237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The molecular basis of vernalization in different plant groups.
    Ream TS; Woods DP; Amasino RM
    Cold Spring Harb Symp Quant Biol; 2012; 77():105-15. PubMed ID: 23619014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactive effects of multiple vernalization (Vrn-1)- and photoperiod (Ppd-1)-related genes on the growth habit of bread wheat and their association with heading and flowering time.
    Chen S; Wang J; Deng G; Chen L; Cheng X; Xu H; Zhan K
    BMC Plant Biol; 2018 Dec; 18(1):374. PubMed ID: 30587132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The transition to flowering in winter rapeseed during vernalization.
    Matar S; Kumar A; Holtgräwe D; Weisshaar B; Melzer S
    Plant Cell Environ; 2021 Feb; 44(2):506-518. PubMed ID: 33190312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climate change and the flowering time of annual crops.
    Craufurd PQ; Wheeler TR
    J Exp Bot; 2009; 60(9):2529-39. PubMed ID: 19505929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flowering response of rice to photoperiod and temperature: a QTL analysis using a phenological model.
    Nakagawa H; Yamagishi J; Miyamoto N; Motoyama M; Yano M; Nemoto K
    Theor Appl Genet; 2005 Feb; 110(4):778-86. PubMed ID: 15723276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic dissection of flowering time in Brassica rapa responses to temperature and photoperiod.
    Xiao D; Shen HR; Zhao JJ; Wei YP; Liu DR; Hou XL; Bonnema G
    Plant Sci; 2019 Mar; 280():110-119. PubMed ID: 30823988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.