BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 23405059)

  • 1. ETMB-RBF: discrimination of metal-binding sites in electron transporters based on RBF networks with PSSM profiles and significant amino acid pairs.
    Ou YY; Chen SA; Wu SC
    PLoS One; 2013; 8(2):e46572. PubMed ID: 23405059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of FAD binding sites in electron transport proteins according to efficient radial basis function networks and significant amino acid pairs.
    Le NQ; Ou YY
    BMC Bioinformatics; 2016 Jul; 17():298. PubMed ID: 27475771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of transporter targets using efficient RBF networks with PSSM profiles and biochemical properties.
    Chen SA; Ou YY; Lee TY; Gromiha MM
    Bioinformatics; 2011 Aug; 27(15):2062-7. PubMed ID: 21653515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporating efficient radial basis function networks and significant amino acid pairs for predicting GTP binding sites in transport proteins.
    Le NQ; Ou YY
    BMC Bioinformatics; 2016 Dec; 17(Suppl 19):501. PubMed ID: 28155651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying the molecular functions of electron transport proteins using radial basis function networks and biochemical properties.
    Le NQ; Nguyen TT; Ou YY
    J Mol Graph Model; 2017 May; 73():166-178. PubMed ID: 28285094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of FMN Binding Sites in Electron Transport Chains Based on 2-D CNN and PSSM Profiles.
    Le NQ; Nguyen BP
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2189-2197. PubMed ID: 31380767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ET-GRU: using multi-layer gated recurrent units to identify electron transport proteins.
    Le NQK; Yapp EKY; Yeh HY
    BMC Bioinformatics; 2019 Jul; 20(1):377. PubMed ID: 31277574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FAD-BERT: Improved prediction of FAD binding sites using pre-training of deep bidirectional transformers.
    Ho QT; Nguyen TT; Khanh Le NQ; Ou YY
    Comput Biol Med; 2021 Apr; 131():104258. PubMed ID: 33601085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TMBETADISC-RBF: Discrimination of beta-barrel membrane proteins using RBF networks and PSSM profiles.
    Ou YY; Gromiha MM; Chen SA; Suwa M
    Comput Biol Chem; 2008 Jun; 32(3):227-31. PubMed ID: 18434251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation and identification of protein carbonylation sites based on position-specific amino acid composition and physicochemical features.
    Weng SL; Huang KY; Kaunang FJ; Huang CH; Kao HJ; Chang TH; Wang HY; Lu JJ; Lee TY
    BMC Bioinformatics; 2017 Mar; 18(Suppl 3):66. PubMed ID: 28361707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of metal ion binding sites based on amino acid sequences.
    Cao X; Hu X; Zhang X; Gao S; Ding C; Feng Y; Bao W
    PLoS One; 2017; 12(8):e0183756. PubMed ID: 28854211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting RNA-binding sites of proteins using support vector machines and evolutionary information.
    Cheng CW; Su EC; Hwang JK; Sung TY; Hsu WL
    BMC Bioinformatics; 2008 Dec; 9 Suppl 12(Suppl 12):S6. PubMed ID: 19091029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of clathrin proteins by incorporating hyperparameter optimization in deep learning and PSSM profiles.
    Le NQK; Huynh TT; Yapp EKY; Yeh HY
    Comput Methods Programs Biomed; 2019 Aug; 177():81-88. PubMed ID: 31319963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein-RNA interface residue prediction using machine learning: an assessment of the state of the art.
    Walia RR; Caragea C; Lewis BA; Towfic F; Terribilini M; El-Manzalawy Y; Dobbs D; Honavar V
    BMC Bioinformatics; 2012 May; 13():89. PubMed ID: 22574904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SVM based prediction of RNA-binding proteins using binding residues and evolutionary information.
    Kumar M; Gromiha MM; Raghava GP
    J Mol Recognit; 2011; 24(2):303-13. PubMed ID: 20677174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PSSM-Suc: Accurately predicting succinylation using position specific scoring matrix into bigram for feature extraction.
    Dehzangi A; López Y; Lal SP; Taherzadeh G; Michaelson J; Sattar A; Tsunoda T; Sharma A
    J Theor Biol; 2017 Jul; 425():97-102. PubMed ID: 28483566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of vitamin interacting residues in a vitamin binding protein using evolutionary information.
    Panwar B; Gupta S; Raghava GP
    BMC Bioinformatics; 2013 Feb; 14():44. PubMed ID: 23387468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporating post translational modification information for enhancing the predictive performance of membrane transport proteins.
    Le NQK; Sandag GA; Ou YY
    Comput Biol Chem; 2018 Dec; 77():251-260. PubMed ID: 30393099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. iProDNA-CapsNet: identifying protein-DNA binding residues using capsule neural networks.
    Nguyen BP; Nguyen QH; Doan-Ngoc GN; Nguyen-Vo TH; Rahardja S
    BMC Bioinformatics; 2019 Dec; 20(Suppl 23):634. PubMed ID: 31881828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding and Modulating Metalloenzymes with Unnatural Amino Acids, Non-Native Metal Ions, and Non-Native Metallocofactors.
    Mirts EN; Bhagi-Damodaran A; Lu Y
    Acc Chem Res; 2019 Apr; 52(4):935-944. PubMed ID: 30912643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.