These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
61 related articles for article (PubMed ID: 2340507)
21. Activation of phosphatidylcholine signalling during oxidative stress in synaptic endings. Mateos MV; Uranga RM; Salvador GA; Giusto NM Neurochem Int; 2008 Dec; 53(6-8):199-206. PubMed ID: 18692105 [TBL] [Abstract][Full Text] [Related]
22. Effect of colonic perfusion with sulfated and nonsulfated bile acids on mucosal structure and function in the rat. Breuer NF; Rampton DS; Tammar A; Murphy GM; Dowling RH Gastroenterology; 1983 May; 84(5 Pt 1):969-77. PubMed ID: 6299874 [TBL] [Abstract][Full Text] [Related]
23. Acute effects of dietary cholic acid and methylazoxymethanol acetate on colon epithelial cell proliferation; metabolism of bile salts and neutral sterols in conventional and germfree SD rats. Weidema WF; Deschner EE; Cohen BI; DeCosse JJ J Natl Cancer Inst; 1985 Mar; 74(3):665-70. PubMed ID: 3856068 [TBL] [Abstract][Full Text] [Related]
24. Enrichment of the more hydrophilic bile acid ursodeoxycholic acid in the fecal water-soluble fraction after feeding to rats with colon polyps. Batta AK; Salen G; Holubec H; Brasitus TA; Alberts D; Earnest DL Cancer Res; 1998 Apr; 58(8):1684-7. PubMed ID: 9563483 [TBL] [Abstract][Full Text] [Related]
25. Novel signaling molecules implicated in tumor-associated fatty acid synthase-dependent breast cancer cell proliferation and survival: Role of exogenous dietary fatty acids, p53-p21WAF1/CIP1, ERK1/2 MAPK, p27KIP1, BRCA1, and NF-kappaB. Menendez JA; Mehmi I; Atlas E; Colomer R; Lupu R Int J Oncol; 2004 Mar; 24(3):591-608. PubMed ID: 14767544 [TBL] [Abstract][Full Text] [Related]
26. Sn-2-monoacylglycerol, not glycerol, is preferentially utilised for triacylglycerol and phosphatidylcholine biosynthesis in Atlantic salmon (Salmo salar L.) intestine. Oxley A; Jutfelt F; Sundell K; Olsen RE Comp Biochem Physiol B Biochem Mol Biol; 2007 Jan; 146(1):115-23. PubMed ID: 17126582 [TBL] [Abstract][Full Text] [Related]
27. Relation of serum cholesterol to in vitro 7alpha-dehydroxylation of primary bile acids by fecal bacteria in infants and children. Samuel P; Schussheim A; Lieberman S; Don EC Pediatrics; 1974 Aug; 54(2):222-8. PubMed ID: 4847858 [No Abstract] [Full Text] [Related]
28. The effects of bile acids on phospholipase C activity in extracts of normal human colon mucosa and primary colon tumors. Nomoto K; Morotomi M; Miyake M; Xu DB; LoGerfo PP; Weinstein IB Mol Carcinog; 1994 Feb; 9(2):87-94. PubMed ID: 8142013 [TBL] [Abstract][Full Text] [Related]
29. Alteration in 1,2-diacylglycerol level and its fatty acid composition in hearts during the growth of hamsters. Okumura K; Yamada Y; Kondo J; Hashimoto H; Ito T; Ogawa K Basic Res Cardiol; 1990; 85(2):164-71. PubMed ID: 2350330 [TBL] [Abstract][Full Text] [Related]
30. Diaglycerol biosynthesis in everted sacs of rat intestinal mucosa. Breckenridge WC; Kuksis A Can J Biochem; 1975 Nov; 53(11):1170-83. PubMed ID: 1192259 [TBL] [Abstract][Full Text] [Related]
31. Intestinal microflora and bile acids. In vitro cholic acid transformation by mixed fecal culture of rats. Morotomi M; Kawai Y; Mutai M Microbiol Immunol; 1979; 23(9):839-47. PubMed ID: 43948 [TBL] [Abstract][Full Text] [Related]
32. Effect of harvesting methods, growth conditions and growth phase on diacylglycerol levels in cultured human adherent cells. Van Veldhoven PP; Bell RM Biochim Biophys Acta; 1988 Mar; 959(2):185-96. PubMed ID: 3349097 [TBL] [Abstract][Full Text] [Related]
33. A method for measurement of nanogram quantities of 3-methylcholanthrene in stool samples. Duane WC; Behrens JC; Kelly SG; Levine AS J Lipid Res; 1984 May; 25(5):523-6. PubMed ID: 6736785 [TBL] [Abstract][Full Text] [Related]
34. Incorporation of fatty acids into monogalactosyl diglyceride and acylation of monogalactosyl monoglyceride by spinach leaf preparations. Bajwa SS; Sastry PS Indian J Biochem Biophys; 1975 Sep; 12(3):243-8. PubMed ID: 1221025 [No Abstract] [Full Text] [Related]
35. Free radical generating mechanisms in the colon: their role in the induction and promotion of colorectal cancer? Blakeborough MH; Owen RW; Bilton RF Free Radic Res Commun; 1989; 6(6):359-67. PubMed ID: 2792847 [TBL] [Abstract][Full Text] [Related]
36. Effects of Lysophosphatidylcholine on Intestinal Health of Turbot Fed High-Lipid Diets. Li S; Luo X; Liao Z; Liang M; Xu H; Mai K; Zhang Y Nutrients; 2022 Oct; 14(20):. PubMed ID: 36297082 [TBL] [Abstract][Full Text] [Related]
37. Cross sectional evaluation of the gut-microbiome metabolome axis in an Italian cohort of IBD patients. Santoru ML; Piras C; Murgia A; Palmas V; Camboni T; Liggi S; Ibba I; Lai MA; Orrù S; Blois S; Loizedda AL; Griffin JL; Usai P; Caboni P; Atzori L; Manzin A Sci Rep; 2017 Aug; 7(1):9523. PubMed ID: 28842640 [TBL] [Abstract][Full Text] [Related]
38. Butyrate produced by commensal bacteria potentiates phorbol esters induced AP-1 response in human intestinal epithelial cells. Nepelska M; Cultrone A; Béguet-Crespel F; Le Roux K; Doré J; Arulampalam V; Blottière HM PLoS One; 2012; 7(12):e52869. PubMed ID: 23300800 [TBL] [Abstract][Full Text] [Related]
39. A rat model of chronic postinflammatory visceral pain induced by deoxycholic acid. Traub RJ; Tang B; Ji Y; Pandya S; Yfantis H; Sun Y Gastroenterology; 2008 Dec; 135(6):2075-83. PubMed ID: 19000677 [TBL] [Abstract][Full Text] [Related]
40. Deoxycholic acid formation in gnotobiotic mice associated with human intestinal bacteria. Narushima S; Itoha K; Miyamoto Y; Park SH; Nagata K; Kuruma K; Uchida K Lipids; 2006 Sep; 41(9):835-43. PubMed ID: 17152920 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]