BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 23405961)

  • 21. Generation of 2,000 breast cancer metabolic landscapes reveals a poor prognosis group with active serotonin production.
    Leoncikas V; Wu H; Ward LT; Kierzek AM; Plant NJ
    Sci Rep; 2016 Jan; 6():19771. PubMed ID: 26813959
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A potential prognostic long non-coding RNA signature to predict metastasis-free survival of breast cancer patients.
    Sun J; Chen X; Wang Z; Guo M; Shi H; Wang X; Cheng L; Zhou M
    Sci Rep; 2015 Nov; 5():16553. PubMed ID: 26549855
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An evaluation study of biclusters visualization techniques of gene expression data.
    Aouabed H; Elloumi M; Santamaría R
    J Integr Bioinform; 2021 Oct; 18(4):. PubMed ID: 34699698
    [No Abstract]   [Full Text] [Related]  

  • 24. Design and multiseries validation of a web-based gene expression assay for predicting breast cancer recurrence and patient survival.
    Van Laar RK
    J Mol Diagn; 2011 May; 13(3):297-304. PubMed ID: 21458382
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identifying cancer biomarkers by network-constrained support vector machines.
    Chen L; Xuan J; Riggins RB; Clarke R; Wang Y
    BMC Syst Biol; 2011 Oct; 5():161. PubMed ID: 21992556
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A specific gene expression signature for visceral organ metastasis in breast cancer.
    Savci-Heijink CD; Halfwerk H; Koster J; Horlings HM; van de Vijver MJ
    BMC Cancer; 2019 Apr; 19(1):333. PubMed ID: 30961553
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of a co‑expression network for the analysis of aggressive and non‑aggressive breast cancer cell lines to predict the clinical outcome of patients.
    Guo L; Zhang K; Bing Z
    Mol Med Rep; 2017 Dec; 16(6):7967-7978. PubMed ID: 28944917
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Network-based approach to identify prognostic biomarkers for estrogen receptor-positive breast cancer treatment with tamoxifen.
    Liu R; Guo CX; Zhou HH
    Cancer Biol Ther; 2015; 16(2):317-24. PubMed ID: 25756514
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combining gene signatures improves prediction of breast cancer survival.
    Zhao X; Rødland EA; Sørlie T; Naume B; Langerød A; Frigessi A; Kristensen VN; Børresen-Dale AL; Lingjærde OC
    PLoS One; 2011 Mar; 6(3):e17845. PubMed ID: 21423775
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A lncRNA prognostic signature associated with immune infiltration and tumour mutation burden in breast cancer.
    Liu Z; Mi M; Li X; Zheng X; Wu G; Zhang L
    J Cell Mol Med; 2020 Nov; 24(21):12444-12456. PubMed ID: 32967061
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gene expression profiling of primary male breast cancers reveals two unique subgroups and identifies N-acetyltransferase-1 (NAT1) as a novel prognostic biomarker.
    Johansson I; Nilsson C; Berglund P; Lauss M; Ringnér M; Olsson H; Luts L; Sim E; Thorstensson S; Fjällskog ML; Hedenfalk I
    Breast Cancer Res; 2012 Feb; 14(1):R31. PubMed ID: 22333393
    [TBL] [Abstract][Full Text] [Related]  

  • 32. FUNMarker: Fusion Network-Based Method to Identify Prognostic and Heterogeneous Breast Cancer Biomarkers.
    Li X; Xiang J; Wang J; Li J; Wu FX; Li M
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2483-2491. PubMed ID: 32070993
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Co-expression modules identified from published immune signatures reveal five distinct immune subtypes in breast cancer.
    Amara D; Wolf DM; van 't Veer L; Esserman L; Campbell M; Yau C
    Breast Cancer Res Treat; 2017 Jan; 161(1):41-50. PubMed ID: 27815749
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of Genes with Prognostic Value in the Breast Cancer Microenvironment Using Bioinformatics Analysis.
    Ren H; Hu D; Mao Y; Su X
    Med Sci Monit; 2020 Apr; 26():e920212. PubMed ID: 32251269
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of Novel Biomarkers Associated With the Prognosis and Potential Pathogenesis of Breast Cancer via Integrated Bioinformatics Analysis.
    Wu M; Li Q; Wang H
    Technol Cancer Res Treat; 2021; 20():1533033821992081. PubMed ID: 33550915
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identifying survival associated morphological features of triple negative breast cancer using multiple datasets.
    Wang C; Pécot T; Zynger DL; Machiraju R; Shapiro CL; Huang K
    J Am Med Inform Assoc; 2013; 20(4):680-7. PubMed ID: 23585272
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of miRNA expression profiles in breast cancer using biclustering.
    Fiannaca A; La Rosa M; La Paglia L; Rizzo R; Urso A
    BMC Bioinformatics; 2015; 16 Suppl 4(Suppl 4):S7. PubMed ID: 25734576
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Clinicopathological and prognostic correlations of HER3 expression and its degradation regulators, NEDD4-1 and NRDP1, in primary breast cancer.
    Luhtala S; Staff S; Kallioniemi A; Tanner M; Isola J
    BMC Cancer; 2018 Oct; 18(1):1045. PubMed ID: 30367623
    [TBL] [Abstract][Full Text] [Related]  

  • 39. EarlyR: A Robust Gene Expression Signature for Predicting Outcomes of Estrogen Receptor-Positive Breast Cancer.
    Buechler SA; Gökmen-Polar Y; Badve SS
    Clin Breast Cancer; 2019 Feb; 19(1):17-26.e8. PubMed ID: 30097312
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rank-preserving biclustering algorithm: a case study on miRNA breast cancer.
    Mandal K; Sarmah R; Bhattacharyya DK; Kalita JK; Borah B
    Med Biol Eng Comput; 2021 Apr; 59(4):989-1004. PubMed ID: 33840048
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.