These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 23406)

  • 1. Sodium and calcium movements in dog red blood cells.
    Parker JC
    J Gen Physiol; 1978 Jan; 71(1):1-17. PubMed ID: 23406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diamide stimulates calcium-sodium exchange in dog red blood cells.
    Parker JC
    Am J Physiol; 1987 Oct; 253(4 Pt 1):C580-7. PubMed ID: 2821821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active and passive Ca movements in dog red blood cells and resealed ghosts.
    Parker JC
    Am J Physiol; 1979 Jul; 237(1):C10-6. PubMed ID: 464036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium-calcium exchange and calcium-calcium exchange in internally dialyzed squid giant axons.
    Blaustein MP; Russell JM
    J Membr Biol; 1975 Jul; 22(3-4):285-312. PubMed ID: 1159780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sodium- and adenosine-triphosphate-dependent calcium movements in membrane vesicles prepared from dog erythrocytes.
    Ortiz OE; Sjodin RA
    J Physiol; 1984 Sep; 354():287-301. PubMed ID: 6090650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proton fluxes associated with the Ca pump in human red blood cells.
    Milanick MA
    Am J Physiol; 1990 Mar; 258(3 Pt 1):C552-62. PubMed ID: 2156439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ca-induced K transport in human red blood cell ghosts containing arsenazo III. Transmembrane interactions of Na, K, and Ca and the relationship to the functioning Na-K pump.
    Yingst DR; Hoffman JF
    J Gen Physiol; 1984 Jan; 83(1):19-45. PubMed ID: 6319543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Passive calcium movements in dog red blood cells: anion effects.
    Parker JC
    Am J Physiol; 1983 May; 244(5):C318-23. PubMed ID: 6846522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium transport mechanisms in dog red blood cells studied from measurements of initial flux rates.
    Altamirano AA; Beaugé L
    Cell Calcium; 1985 Dec; 6(6):503-25. PubMed ID: 3937600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lithium transport pathways in human red blood cells.
    Pandey GN; Sarkadi B; Haas M; Gunn RB; Davis JM; Tosteson DC
    J Gen Physiol; 1978 Aug; 72(2):233-47. PubMed ID: 690597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modes of operation and variable stoichiometry of the furosemide- sensitive Na and K fluxes in human red cells.
    Canessa M; Brugnara C; Cusi D; Tosteson DC
    J Gen Physiol; 1986 Jan; 87(1):113-42. PubMed ID: 3950574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of sodium, calcium and metabolic inhibitors on calcium efflux from goldfish heart ventricles.
    Busselen P; van Kerkhove E
    J Physiol; 1978 Sep; 282():263-83. PubMed ID: 722529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics and stoichiometry of coupled Na efflux and Ca influx (Na/Ca exchange) in barnacle muscle cells.
    Rasgado-Flores H; Santiago EM; Blaustein MP
    J Gen Physiol; 1989 Jun; 93(6):1219-41. PubMed ID: 2769225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of quinidine on cation exchange in cultured cells.
    McCall D
    J Pharmacol Exp Ther; 1976 Jun; 197(3):605-14. PubMed ID: 932993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absence of significant sodium-hydrogen exchange by rabbit erythrocyte sodium-lithium countertransporter.
    Jennings ML; Adams-Lackey M; Cook KW
    Am J Physiol; 1985 Jul; 249(1 Pt 1):C63-8. PubMed ID: 4014452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of lithium and protons with the sodium-proton exchanger of dog red blood cells.
    Parker JC
    J Gen Physiol; 1986 Feb; 87(2):189-200. PubMed ID: 3005472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na/Ca exchange in barnacle muscle cells has a stoichiometry of 3 Na+/1 Ca2+.
    Rasgado-Flores H; Blaustein MP
    Am J Physiol; 1987 May; 252(5 Pt 1):C499-504. PubMed ID: 3578502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Volume-responsive sodium movements in dog red blood cells.
    Parker JC
    Am J Physiol; 1983 May; 244(5):C324-30. PubMed ID: 6846523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An amiloride-sensitive, volume-dependent Na+ transport across the lamprey (Lampetra fluviatilis) erythrocyte membrane.
    Gusev GP; Sherstobitov AO
    Gen Physiol Biophys; 1996 Apr; 15(2):129-43. PubMed ID: 8899417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane transport of sodium ions in erythrocytes of the American black bear, Ursus americanus.
    Willis JS; Nelson RA; Gordon C; Vilaro P; Zhao ZH
    Comp Biochem Physiol A Comp Physiol; 1990; 96(1):91-6. PubMed ID: 1975544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.