These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 23406101)

  • 1. Going beyond the frozen core approximation: development of coordinate-dependent pseudopotentials and application to Na2(+).
    Kahros A; Schwartz BJ
    J Chem Phys; 2013 Feb; 138(5):054110. PubMed ID: 23406101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Response to "Comment on 'Going beyond the frozen core approximation: development of coordinate-dependent pseudopotentials and application to Na2(+)'" [J. Chem. Phys. 139, 147101 (2013)].
    Kahros A; Schwartz BJ
    J Chem Phys; 2013 Oct; 139(14):147102. PubMed ID: 24116653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comment on "Going beyond the frozen core approximation: development of coordinate-dependent pseudopotentials and application to Na2(+)" [J. Chem. Phys. 138, 054110 (2013)].
    Stoll H; Fuentealba P; von Szentpály L
    J Chem Phys; 2013 Oct; 139(14):147101. PubMed ID: 24116652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The roles of electronic exchange and correlation in charge-transfer- to-solvent dynamics: Many-electron nonadiabatic mixed quantum/classical simulations of photoexcited sodium anions in the condensed phase.
    Glover WJ; Larsen RE; Schwartz BJ
    J Chem Phys; 2008 Oct; 129(16):164505. PubMed ID: 19045282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A computationally efficient exact pseudopotential method. I. Analytic reformulation of the Phillips-Kleinman theory.
    Smallwood CJ; Larsen RE; Glover WJ; Schwartz BJ
    J Chem Phys; 2006 Aug; 125(7):074102. PubMed ID: 16942317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Filling the Gap between Pseudopotential and All-Electron Schemes: Frozen-Core Calculations with Efficient Use of Density-Fitting.
    Stoll H
    J Chem Theory Comput; 2014 Sep; 10(9):3857-62. PubMed ID: 26588530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasoft pseudopotentials for lanthanide solvation complexes: core or valence character of the 4f electrons.
    Pollet R; Clavaguéra C; Dognon JP
    J Chem Phys; 2006 Apr; 124(16):164103. PubMed ID: 16674125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical modeling of large molecular systems. Advances in the local self consistent field method for mixed quantum mechanics/molecular mechanics calculations.
    Monari A; Rivail JL; Assfeld X
    Acc Chem Res; 2013 Feb; 46(2):596-603. PubMed ID: 23249409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frozen core and effective core potentials in symmetry-adapted perturbation theory.
    Patkowski K; Szalewicz K
    J Chem Phys; 2007 Oct; 127(16):164103. PubMed ID: 17979315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic data for the LiH molecule from pseudopotential quantum Monte Carlo calculations.
    Trail JR; Needs RJ
    J Chem Phys; 2008 May; 128(20):204103. PubMed ID: 18513006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy-consistent pseudopotentials and correlation consistent basis sets for the 5d elements Hf-Pt.
    Figgen D; Peterson KA; Dolg M; Stoll H
    J Chem Phys; 2009 Apr; 130(16):164108. PubMed ID: 19405562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computationally efficient exact pseudopotential method. II. Application to the molecular pseudopotential of an excess electron interacting with tetrahydrofuran (THF).
    Smallwood CJ; Mejia CN; Glover WJ; Larsen RE; Schwartz BJ
    J Chem Phys; 2006 Aug; 125(7):074103. PubMed ID: 16942318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular core-valence correlation effects involving the post-d elements Ga-Rn: benchmarks and new pseudopotential-based correlation consistent basis sets.
    Peterson KA; Yousaf KE
    J Chem Phys; 2010 Nov; 133(17):174116. PubMed ID: 21054015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate relativistic energy-consistent pseudopotentials for the superheavy elements 111 to 118 including quantum electrodynamic effects.
    Hangele T; Dolg M; Hanrath M; Cao X; Schwerdtfeger P
    J Chem Phys; 2012 Jun; 136(21):214105. PubMed ID: 22697528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of selected molecular orbitals in group basis sets.
    Ferenczy GG; Adams WH
    J Chem Phys; 2009 Apr; 130(13):134108. PubMed ID: 19355718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relativistic energy-consistent pseudopotentials for superheavy elements 119 and 120 including quantum electrodynamic effects.
    Hangele T; Dolg M; Schwerdtfeger P
    J Chem Phys; 2013 May; 138(17):174113. PubMed ID: 23656120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimized Slater-type basis sets for the elements 1-118.
    Van Lenthe E; Baerends EJ
    J Comput Chem; 2003 Jul; 24(9):1142-56. PubMed ID: 12759913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the accuracy of one-component pseudopotential spin-orbit calculations.
    Fromager E; Visscher L; Maron L; Teichteil C
    J Chem Phys; 2005 Oct; 123(16):164105. PubMed ID: 16268679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculation of wave-functions with frozen orbitals in mixed quantum mechanics/molecular mechanics methods. Part I. Application of the Huzinaga equation.
    Ferenczy GG
    J Comput Chem; 2013 Apr; 34(10):854-61. PubMed ID: 23281055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The static-exchange electron-water pseudopotential, in conjunction with a polarizable water model: a new Hamiltonian for hydrated-electron simulations.
    Jacobson LD; Williams CF; Herbert JM
    J Chem Phys; 2009 Mar; 130(12):124115. PubMed ID: 19334816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.