These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 23406418)

  • 1. LacI-DNA-IPTG loops: equilibria among conformations by single-molecule FRET.
    Goodson KA; Wang Z; Haeusler AR; Kahn JD; English DS
    J Phys Chem B; 2013 Apr; 117(16):4713-22. PubMed ID: 23406418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence resonance energy transfer over approximately 130 basepairs in hyperstable lac repressor-DNA loops.
    Edelman LM; Cheong R; Kahn JD
    Biophys J; 2003 Feb; 84(2 Pt 1):1131-45. PubMed ID: 12547794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FRET studies of a landscape of Lac repressor-mediated DNA loops.
    Haeusler AR; Goodson KA; Lillian TD; Wang X; Goyal S; Perkins NC; Kahn JD
    Nucleic Acids Res; 2012 May; 40(10):4432-45. PubMed ID: 22307389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-molecule spectroscopic determination of lac repressor-DNA loop conformation.
    Morgan MA; Okamoto K; Kahn JD; English DS
    Biophys J; 2005 Oct; 89(4):2588-96. PubMed ID: 16085773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designed hyperstable Lac repressor.DNA loop topologies suggest alternative loop geometries.
    Mehta RA; Kahn JD
    J Mol Biol; 1999 Nov; 294(1):67-77. PubMed ID: 10556029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteins mediating DNA loops effectively block transcription.
    Vörös Z; Yan Y; Kovari DT; Finzi L; Dunlap D
    Protein Sci; 2017 Jul; 26(7):1427-1438. PubMed ID: 28295806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-guided approach to site-specific fluorophore labeling of the lac repressor LacI.
    Kipper K; Eremina N; Marklund E; Tubasum S; Mao G; Lehmann LC; Elf J; Deindl S
    PLoS One; 2018; 13(6):e0198416. PubMed ID: 29856839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Establishment of a low-dosage-IPTG inducible expression system construction method in Escherichia coli.
    Zhao M; Tao XY; Wang FQ; Ren YH; Wei DZ
    J Basic Microbiol; 2018 Sep; 58(9):806-810. PubMed ID: 29962051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring DNA binding to Escherichia coli lactose repressor using quartz crystal microbalance with dissipation.
    Xu J; Liu KW; Matthews KS; Biswal SL
    Langmuir; 2011 Apr; 27(8):4900-5. PubMed ID: 21410208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A single mutation in the core domain of the lac repressor reduces leakiness.
    Gatti-Lafranconi P; Dijkman WP; Devenish SR; Hollfelder F
    Microb Cell Fact; 2013 Jul; 12():67. PubMed ID: 23834731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperative and anticooperative effects in binding of the first and second plasmid Osym operators to a LacI tetramer: evidence for contributions of non-operator DNA binding by wrapping and looping.
    Levandoski MM; Tsodikov OV; Frank DE; Melcher SE; Saecker RM; Record MT
    J Mol Biol; 1996 Aug; 260(5):697-717. PubMed ID: 8709149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct observation of a 91 bp LacI-mediated, negatively supercoiled DNA loop by atomic force microscope.
    Fulcrand G; Chapagain P; Dunlap D; Leng F
    FEBS Lett; 2016 Mar; 590(5):613-8. PubMed ID: 26878689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering alternate cooperative-communications in the lactose repressor protein scaffold.
    Meyer S; Ramot R; Kishore Inampudi K; Luo B; Lin C; Amere S; Wilson CJ
    Protein Eng Des Sel; 2013 Jun; 26(6):433-43. PubMed ID: 23587523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of in-vivo LacR-mediated gene repression based on the mechanics of DNA looping.
    Zhang Y; McEwen AE; Crothers DM; Levene SD
    PLoS One; 2006 Dec; 1(1):e136. PubMed ID: 17205140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tethered particle motion reveals that LacI·DNA loops coexist with a competitor-resistant but apparently unlooped conformation.
    Revalee JD; Blab GA; Wilson HD; Kahn JD; Meiners JC
    Biophys J; 2014 Feb; 106(3):705-15. PubMed ID: 24507611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of the lactose operon repressor and its complexes with DNA and inducer.
    Lewis M; Chang G; Horton NC; Kercher MA; Pace HC; Schumacher MA; Brennan RG; Lu P
    Science; 1996 Mar; 271(5253):1247-54. PubMed ID: 8638105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A closer view of the conformation of the Lac repressor bound to operator.
    Bell CE; Lewis M
    Nat Struct Biol; 2000 Mar; 7(3):209-14. PubMed ID: 10700279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexibility in the inducer binding region is crucial for allostery in the Escherichia coli lactose repressor.
    Xu J; Matthews KS
    Biochemistry; 2009 Jun; 48(22):4988-98. PubMed ID: 19368358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wrapping of flanking non-operator DNA in lac repressor-operator complexes: implications for DNA looping.
    Tsodikov OV; Saecker RM; Melcher SE; Levandoski MM; Frank DE; Capp MW; Record MT
    J Mol Biol; 1999 Dec; 294(3):639-55. PubMed ID: 10610786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA supercoiling, a critical signal regulating the basal expression of the lac operon in Escherichia coli.
    Fulcrand G; Dages S; Zhi X; Chapagain P; Gerstman BS; Dunlap D; Leng F
    Sci Rep; 2016 Jan; 6():19243. PubMed ID: 26763930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.