These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Frequency-dependent selection can lead to evolution of high mutation rates. Rosenbloom DI; Allen B Am Nat; 2014 May; 183(5):E131-53. PubMed ID: 24739203 [TBL] [Abstract][Full Text] [Related]
23. The Yin and Yang of anti-Darwinian epigenetics and Darwinian genetics. Damiani G Riv Biol; 2007; 100(3):361-402. PubMed ID: 18278738 [TBL] [Abstract][Full Text] [Related]
24. Evolution of digital organisms at high mutation rates leads to survival of the flattest. Wilke CO; Wang JL; Ofria C; Lenski RE; Adami C Nature; 2001 Jul; 412(6844):331-3. PubMed ID: 11460163 [TBL] [Abstract][Full Text] [Related]
26. Comparing artificial and natural selection in rate of adaptation to genetic stress in Aspergillus nidulans. Schoustra SE; Slakhorst M; Debets AJ; Hoekstra RF J Evol Biol; 2005 Jul; 18(4):771-8. PubMed ID: 16033548 [TBL] [Abstract][Full Text] [Related]
27. Adaptation to environmental temperature is a major determinant of molecular evolutionary rates in archaea. Groussin M; Gouy M Mol Biol Evol; 2011 Sep; 28(9):2661-74. PubMed ID: 21498602 [TBL] [Abstract][Full Text] [Related]
28. Rate of adaptive peak shifts with partial genetic robustness. Kim Y Evolution; 2007 Aug; 61(8):1847-56. PubMed ID: 17683428 [TBL] [Abstract][Full Text] [Related]
29. Microevolution in an electronic microcosm. Yedid G; Bell G Am Nat; 2001 May; 157(5):465-87. PubMed ID: 18707256 [TBL] [Abstract][Full Text] [Related]
31. Evolution of evolvability via adaptation of mutation rates. Bedau MA; Packard NH Biosystems; 2003 May; 69(2-3):143-62. PubMed ID: 12689727 [TBL] [Abstract][Full Text] [Related]
32. Interplay between pleiotropy and secondary selection determines rise and fall of mutators in stress response. Heo M; Shakhnovich EI PLoS Comput Biol; 2010 Mar; 6(3):e1000710. PubMed ID: 20300650 [TBL] [Abstract][Full Text] [Related]
33. Mutation rate variability as a driving force in adaptive evolution. Engelhardt D; Shakhnovich EI Phys Rev E; 2019 Feb; 99(2-1):022424. PubMed ID: 30934244 [TBL] [Abstract][Full Text] [Related]
34. Seeing is believing: what experiments with microbes reveal about evolution. van Ditmarsch D; Xavier JB Trends Microbiol; 2014 Jan; 22(1):2-4. PubMed ID: 24384383 [TBL] [Abstract][Full Text] [Related]
35. A Model for Designing Adaptive Laboratory Evolution Experiments. LaCroix RA; Palsson BO; Feist AM Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28159796 [TBL] [Abstract][Full Text] [Related]
36. Adaptive aging in the context of evolutionary theory. Mitteldorf JJ Biochemistry (Mosc); 2012 Jul; 77(7):716-25. PubMed ID: 22817534 [TBL] [Abstract][Full Text] [Related]
37. Rethinking the (im)possible in evolution. Shapiro JA Prog Biophys Mol Biol; 2013 Apr; 111(2-3):92-6. PubMed ID: 22986107 [TBL] [Abstract][Full Text] [Related]
38. An interplay of resource availability, population size and mutation rate potentiates the evolution of metabolic signaling. Kumawat B; Bhat R BMC Ecol Evol; 2021 Apr; 21(1):52. PubMed ID: 33827412 [TBL] [Abstract][Full Text] [Related]
39. The road not taken: Could stress-specific mutations lead to different evolutionary paths? Agashe D PLoS Biol; 2017 Jun; 15(6):e2002862. PubMed ID: 28594832 [TBL] [Abstract][Full Text] [Related]
40. Non-random mutation: the evolution of targeted hypermutation and hypomutation. Martincorena I; Luscombe NM Bioessays; 2013 Feb; 35(2):123-30. PubMed ID: 23281172 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]