These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 23406916)

  • 1. Symmetry breaking and restoration using the equation-of-motion technique for nonequilibrium quantum impurity models.
    Levy TJ; Rabani E
    J Phys Condens Matter; 2013 Mar; 25(11):115302. PubMed ID: 23406916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steady state conductance in a double quantum dot array: the nonequilibrium equation-of-motion Green function approach.
    Levy TJ; Rabani E
    J Chem Phys; 2013 Apr; 138(16):164125. PubMed ID: 23635129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An advanced multi-orbital impurity solver for dynamical mean field theory based on the equation of motion approach.
    Feng Q; Oppeneer PM
    J Phys Condens Matter; 2012 Feb; 24(5):055603. PubMed ID: 22248628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classical mapping for Hubbard operators: application to the double-Anderson model.
    Li B; Miller WH; Levy TJ; Rabani E
    J Chem Phys; 2014 May; 140(20):204106. PubMed ID: 24880265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonequilibrium transport in quantum impurity models: exact path integral simulations.
    Segal D; Millis AJ; Reichman DR
    Phys Chem Chem Phys; 2011 Aug; 13(32):14378-86. PubMed ID: 21674100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Out of equilibrium transport through an Anderson impurity: probing scaling laws within the equation of motion approach.
    Balseiro CA; Usaj G; Sánchez MJ
    J Phys Condens Matter; 2010 Oct; 22(42):425602. PubMed ID: 21403312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Auxiliary Master Equation for Nonequilibrium Dual-Fermion Approach.
    Chen F; Cohen G; Galperin M
    Phys Rev Lett; 2019 May; 122(18):186803. PubMed ID: 31144909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Green's functions from real-time bold-line Monte Carlo calculations: spectral properties of the nonequilibrium Anderson impurity model.
    Cohen G; Gull E; Reichman DR; Millis AJ
    Phys Rev Lett; 2014 Apr; 112(14):146802. PubMed ID: 24766001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Cartesian quasi-classical model to nonequilibrium quantum transport: the Anderson impurity model.
    Li B; Levy TJ; Swenson DW; Rabani E; Miller WH
    J Chem Phys; 2013 Mar; 138(10):104110. PubMed ID: 23514468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonequilibrium Kondo regime current noise spectrum of quantum dot systems with the single impurity Anderson model.
    Mao H; Jin J; Wang S; Yan Y
    J Chem Phys; 2021 Jul; 155(1):014104. PubMed ID: 34241380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous symmetry breaking and localization in nonequilibrium steady states of interactive quantum systems.
    Wu S; Cai Z
    Sci Bull (Beijing); 2023 Sep; 68(18):2010-2016. PubMed ID: 37567811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extended dissipaton equation of motion for electronic open quantum systems: Application to the Kondo impurity model.
    Su Y; Chen ZH; Wang Y; Zheng X; Xu RX; Yan Y
    J Chem Phys; 2023 Jul; 159(2):. PubMed ID: 37428061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonequilibrium dynamics of a singlet-triplet Anderson impurity near the quantum phase transition.
    Roura Bas P; Aligia AA
    J Phys Condens Matter; 2010 Jan; 22(2):025602. PubMed ID: 21386260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: reduced hierarchy equation approach.
    Ishizaki A; Fleming GR
    J Chem Phys; 2009 Jun; 130(23):234111. PubMed ID: 19548715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of symmetry breaking during quantum real-time evolution in a minimal model system.
    Heyl M; Vojta M
    Phys Rev Lett; 2014 Oct; 113(18):180601. PubMed ID: 25396355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonequilibrium Steady-State Transport in Quantum Impurity Models: A Thermofield and Quantum Quench Approach Using Matrix Product States.
    Schwarz F; Weymann I; von Delft J; Weichselbaum A
    Phys Rev Lett; 2018 Sep; 121(13):137702. PubMed ID: 30312054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broken-symmetry states in doubly gated suspended bilayer graphene.
    Weitz RT; Allen MT; Feldman BE; Martin J; Yacoby A
    Science; 2010 Nov; 330(6005):812-6. PubMed ID: 20947726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multiscale study of electronic structure and quantum transport in C(6n(2))H(6n)-based graphene quantum dots.
    Deretzis I; Forte G; Grassi A; La Magna A; Piccitto G; Pucci R
    J Phys Condens Matter; 2010 Mar; 22(9):095504. PubMed ID: 21389419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A non-equilibrium equation-of-motion approach to quantum transport utilizing projection operators.
    Ochoa MA; Galperin M; Ratner MA
    J Phys Condens Matter; 2014 Nov; 26(45):455301. PubMed ID: 25318540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron transfer dynamics: Zusman equation versus exact theory.
    Shi Q; Chen L; Nan G; Xu R; Yan Y
    J Chem Phys; 2009 Apr; 130(16):164518. PubMed ID: 19405605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.