These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

498 related articles for article (PubMed ID: 23407165)

  • 61. Progressively De-Differentiated Pancreatic Cancer Cells Shift from Glycolysis to Oxidative Metabolism and Gain a Quiescent Stem State.
    Ambrosini G; Dalla Pozza E; Fanelli G; Di Carlo C; Vettori A; Cannino G; Cavallini C; Carmona-Carmona CA; Brandi J; Rinalducci S; Scupoli MT; Rasola A; Cecconi D; Palmieri M; Dando I
    Cells; 2020 Jun; 9(7):. PubMed ID: 32605166
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Stroma secreted IL6 selects for "stem-like" population and alters pancreatic tumor microenvironment by reprogramming metabolic pathways.
    Kesh K; Garrido VT; Dosch A; Durden B; Gupta VK; Sharma NS; Lyle M; Nagathihalli N; Merchant N; Saluja A; Banerjee S
    Cell Death Dis; 2020 Nov; 11(11):967. PubMed ID: 33177492
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Tumor-associated macrophages promote progression and the Warburg effect via CCL18/NF-kB/VCAM-1 pathway in pancreatic ductal adenocarcinoma.
    Ye H; Zhou Q; Zheng S; Li G; Lin Q; Wei L; Fu Z; Zhang B; Liu Y; Li Z; Chen R
    Cell Death Dis; 2018 May; 9(5):453. PubMed ID: 29670110
    [TBL] [Abstract][Full Text] [Related]  

  • 64. NPM1 activates metabolic changes by inhibiting FBP1 while promoting the tumorigenicity of pancreatic cancer cells.
    Zhu Y; Shi M; Chen H; Gu J; Zhang J; Shen B; Deng X; Xie J; Zhan X; Peng C
    Oncotarget; 2015 Aug; 6(25):21443-51. PubMed ID: 26068981
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Involvement of angiotensin II type 2 receptor (AT2R) signaling in human pancreatic ductal adenocarcinoma (PDAC): a novel AT2R agonist effectively attenuates growth of PDAC grafts in mice.
    Ishiguro S; Yoshimura K; Tsunedomi R; Oka M; Takao S; Inui M; Kawabata A; Wall T; Magafa V; Cordopatis P; Tzakos AG; Tamura M
    Cancer Biol Ther; 2015; 16(2):307-16. PubMed ID: 25756513
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Vascular endothelial growth factor mediated angiogenic potential of pancreatic ductal carcinomas enhanced by hypoxia: an in vitro and in vivo study.
    Sipos B; Weber D; Ungefroren H; Kalthoff H; Zühlsdorff A; Luther C; Török V; Klöppel G
    Int J Cancer; 2002 Dec; 102(6):592-600. PubMed ID: 12448000
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Hypoxia and Transforming Growth Factor β Cooperate to Induce Fibulin-5 Expression in Pancreatic Cancer.
    Topalovski M; Hagopian M; Wang M; Brekken RA
    J Biol Chem; 2016 Oct; 291(42):22244-22252. PubMed ID: 27531748
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Deuterium MRSI characterizations of glucose metabolism in orthotopic pancreatic cancer mouse models.
    Markovic S; Roussel T; Agemy L; Sasson K; Preise D; Scherz A; Frydman L
    NMR Biomed; 2021 Sep; 34(9):e4569. PubMed ID: 34137085
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Hypoxia-Activated Prodrug Evofosfamide Treatment in Pancreatic Ductal Adenocarcinoma Xenografts Alters the Tumor Redox Status to Potentiate Radiotherapy.
    Kishimoto S; Brender JR; Chandramouli GVR; Saida Y; Yamamoto K; Mitchell JB; Krishna MC
    Antioxid Redox Signal; 2021 Oct; 35(11):904-915. PubMed ID: 32787454
    [No Abstract]   [Full Text] [Related]  

  • 70. Overexpression of ecdysoneless in pancreatic cancer and its role in oncogenesis by regulating glycolysis.
    Dey P; Rachagani S; Chakraborty S; Singh PK; Zhao X; Gurumurthy CB; Anderson JM; Lele S; Hollingsworth MA; Band V; Batra SK
    Clin Cancer Res; 2012 Nov; 18(22):6188-98. PubMed ID: 22977192
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Labeling Cancer Stem Cells with
    Kesh K; Banerjee S
    Methods Mol Biol; 2019; 1996():207-216. PubMed ID: 31127559
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A novel fusicoccin derivative preferentially targets hypoxic tumor cells and inhibits tumor growth in xenografts.
    Kawakami K; Hattori M; Inoue T; Maruyama Y; Ohkanda J; Kato N; Tongu M; Yamada T; Akimoto M; Takenaga K; Sassa T; Suzumiy J; Honma Y
    Anticancer Agents Med Chem; 2012 Sep; 12(7):791-800. PubMed ID: 22263802
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Regulation of HIF1α under Hypoxia by APE1/Ref-1 Impacts CA9 Expression: Dual Targeting in Patient-Derived 3D Pancreatic Cancer Models.
    Logsdon DP; Grimard M; Luo M; Shahda S; Jiang Y; Tong Y; Yu Z; Zyromski N; Schipani E; Carta F; Supuran CT; Korc M; Ivan M; Kelley MR; Fishel ML
    Mol Cancer Ther; 2016 Nov; 15(11):2722-2732. PubMed ID: 27535970
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Notch2 is required for progression of pancreatic intraepithelial neoplasia and development of pancreatic ductal adenocarcinoma.
    Mazur PK; Einwächter H; Lee M; Sipos B; Nakhai H; Rad R; Zimber-Strobl U; Strobl LJ; Radtke F; Klöppel G; Schmid RM; Siveke JT
    Proc Natl Acad Sci U S A; 2010 Jul; 107(30):13438-43. PubMed ID: 20624967
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Microenvironmental factors and extracellular matrix degradation in pancreatic cancer.
    Binker MG; Binker-Cosen MJ; Binker-Cosen AA; Cosen-Binker LI
    JOP; 2014 Jul; 15(4):280-5. PubMed ID: 25076320
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Proteomic analysis of pancreatic cancer stem cells: Functional role of fatty acid synthesis and mevalonate pathways.
    Brandi J; Dando I; Pozza ED; Biondani G; Jenkins R; Elliott V; Park K; Fanelli G; Zolla L; Costello E; Scarpa A; Cecconi D; Palmieri M
    J Proteomics; 2017 Jan; 150():310-322. PubMed ID: 27746256
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Arsenic trioxide plus PX-478 achieves effective treatment in pancreatic ductal adenocarcinoma.
    Lang M; Wang X; Wang H; Dong J; Lan C; Hao J; Huang C; Li X; Yu M; Yang Y; Yang S; Ren H
    Cancer Lett; 2016 Aug; 378(2):87-96. PubMed ID: 27212442
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The hexosamine biosynthetic pathway couples growth factor-induced glutamine uptake to glucose metabolism.
    Wellen KE; Lu C; Mancuso A; Lemons JM; Ryczko M; Dennis JW; Rabinowitz JD; Coller HA; Thompson CB
    Genes Dev; 2010 Dec; 24(24):2784-99. PubMed ID: 21106670
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia.
    Fan J; Kamphorst JJ; Mathew R; Chung MK; White E; Shlomi T; Rabinowitz JD
    Mol Syst Biol; 2013 Dec; 9():712. PubMed ID: 24301801
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Hypoxia and pancreatic ductal adenocarcinoma.
    Yamasaki A; Yanai K; Onishi H
    Cancer Lett; 2020 Aug; 484():9-15. PubMed ID: 32380129
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.