BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 23407401)

  • 1. Remodeling of three-dimensional organization of the nucleus during terminal keratinocyte differentiation in the epidermis.
    Gdula MR; Poterlowicz K; Mardaryev AN; Sharov AA; Peng Y; Fessing MY; Botchkarev VA
    J Invest Dermatol; 2013 Sep; 133(9):2191-201. PubMed ID: 23407401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Molecular Revolution in Cutaneous Biology: Chromosomal Territories, Higher-Order Chromatin Remodeling, and the Control of Gene Expression in Keratinocytes.
    Botchkarev VA
    J Invest Dermatol; 2017 May; 137(5):e93-e99. PubMed ID: 28411854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear topology, epigenetics, and keratinocyte differentiation.
    Hughes MW; Lu W; Chuong CM
    J Invest Dermatol; 2013 Sep; 133(9):2130-3. PubMed ID: 23949766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epigenetic regulation of gene expression in keratinocytes.
    Botchkarev VA; Gdula MR; Mardaryev AN; Sharov AA; Fessing MY
    J Invest Dermatol; 2012 Nov; 132(11):2505-21. PubMed ID: 22763788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein-coding and non-coding gene expression analysis in differentiating human keratinocytes using a three-dimensional epidermal equivalent.
    Mazar J; Sinha S; Dinger ME; Mattick JS; Perera RJ
    Mol Genet Genomics; 2010 Jul; 284(1):1-9. PubMed ID: 20499100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence that apoptosis and terminal differentiation of epidermal keratinocytes are distinct processes.
    Gandarillas A; Goldsmith LA; Gschmeissner S; Leigh IM; Watt FM
    Exp Dermatol; 1999 Feb; 8(1):71-9. PubMed ID: 10206724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ablation of the calcium-sensing receptor in keratinocytes impairs epidermal differentiation and barrier function.
    Tu CL; Crumrine DA; Man MQ; Chang W; Elalieh H; You M; Elias PM; Bikle DD
    J Invest Dermatol; 2012 Oct; 132(10):2350-2359. PubMed ID: 22622426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATP2C1 is specifically localized in the basal layer of normal epidermis and its depletion triggers keratinocyte differentiation.
    Yoshida M; Yamasaki K; Daiho T; Iizuka H; Suzuki H
    J Dermatol Sci; 2006 Jul; 43(1):21-33. PubMed ID: 16621454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional regulation of epidermal barrier formation.
    Bhandari A; Salmans ML; Gordon W; Andersen B
    Methods Mol Biol; 2011; 763():51-71. PubMed ID: 21874443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 1,25-Dihydroxyvitamin D3 stimulates specifically the last steps of epidermal differentiation of cultured human keratinocytes.
    Regnier M; Darmon M
    Differentiation; 1991 Aug; 47(3):173-88. PubMed ID: 1720406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth and differentiation properties of normal and transformed human keratinocytes in organotypic culture.
    Tsunenaga M; Kohno Y; Horii I; Yasumoto S; Huh NH; Tachikawa T; Yoshiki S; Kuroki T
    Jpn J Cancer Res; 1994 Mar; 85(3):238-44. PubMed ID: 8188521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NFAT5 Controls the Integrity of Epidermis.
    Muhammad K; Xavier D; Klein-Hessling S; Azeem M; Rauschenberger T; Murti K; Avots A; Goebeler M; Klein M; Bopp T; Sielaff M; Tenzer S; Möckel S; Aramburu J; López-Rodríguez C; Kerstan A; Serfling E
    Front Immunol; 2021; 12():780727. PubMed ID: 34956208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differentiation of mouse keratinocytes is accompanied by PKC-dependent changes in AP-1 proteins.
    Rutberg SE; Saez E; Glick A; Dlugosz AA; Spiegelman BM; Yuspa SH
    Oncogene; 1996 Jul; 13(1):167-76. PubMed ID: 8700543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interferon regulatory factor 6 is necessary, but not sufficient, for keratinocyte differentiation.
    Biggs LC; Rhea L; Schutte BC; Dunnwald M
    J Invest Dermatol; 2012 Jan; 132(1):50-8. PubMed ID: 21918538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation, Culture, and Characterization of Primary Mouse Epidermal Keratinocytes.
    Zhang LJ
    Methods Mol Biol; 2019; 1940():205-215. PubMed ID: 30788828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constitutive Autophagy and Nucleophagy during Epidermal Differentiation.
    Akinduro O; Sully K; Patel A; Robinson DJ; Chikh A; McPhail G; Braun KM; Philpott MP; Harwood CA; Byrne C; O'Shaughnessy RFL; Bergamaschi D
    J Invest Dermatol; 2016 Jul; 136(7):1460-1470. PubMed ID: 27021405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional control of the differentiation program of interfollicular epidermal keratinocytes.
    Nagarajan P; Romano RA; Sinha S
    Crit Rev Eukaryot Gene Expr; 2008; 18(1):57-79. PubMed ID: 18197786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defining the transcriptome of accelerated and replicatively senescent keratinocytes reveals links to differentiation, interferon signaling, and Notch related pathways.
    Perera RJ; Koo S; Bennett CF; Dean NM; Gupta N; Qin JZ; Nickoloff BJ
    J Cell Biochem; 2006 May; 98(2):394-408. PubMed ID: 16440318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ visualization of intracellular morphology of epidermal cells using stimulated Raman scattering microscopy.
    Egawa M; Tokunaga K; Hosoi J; Iwanaga S; Ozeki Y
    J Biomed Opt; 2016 Aug; 21(8):86017. PubMed ID: 27580366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear staining and relative distance for quantifying epidermal differentiation in biomarker expression profiling.
    Pommerencke T; Steinberg T; Dickhaus H; Tomakidi P; Grabe N
    BMC Bioinformatics; 2008 Nov; 9():473. PubMed ID: 18990218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.