These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
413 related articles for article (PubMed ID: 23407649)
1. Contribution of AM inoculation and cattle manure to lead and cadmium phytoremediation by tobacco plants. Wang FY; Shi ZY; Xu XF; Wang XG; Li YJ Environ Sci Process Impacts; 2013 Apr; 15(4):794-801. PubMed ID: 23407649 [TBL] [Abstract][Full Text] [Related]
2. A study on the effects of lead, cadmium and phosphorus on the lead and cadmium uptake efficacy of Viola baoshanensis inoculated with arbuscular mycorrhizal fungi. Zhong WL; Li JT; Chen YT; Shu WS; Liao B J Environ Monit; 2012 Sep; 14(9):2497-504. PubMed ID: 22864990 [TBL] [Abstract][Full Text] [Related]
3. Arbuscular mycorrhizal fungi enhance both absorption and stabilization of Cd by Alfred stonecrop (Sedum alfredii Hance) and perennial ryegrass (Lolium perenne L.) in a Cd-contaminated acidic soil. Hu J; Wu S; Wu F; Leung HM; Lin X; Wong MH Chemosphere; 2013 Oct; 93(7):1359-65. PubMed ID: 24011894 [TBL] [Abstract][Full Text] [Related]
4. Assessment of arbuscular mycorrhizal fungi status and heavy metal accumulation characteristics of tree species in a lead-zinc mine area: potential applications for phytoremediation. Yang Y; Liang Y; Ghosh A; Song Y; Chen H; Tang M Environ Sci Pollut Res Int; 2015 Sep; 22(17):13179-93. PubMed ID: 25929455 [TBL] [Abstract][Full Text] [Related]
5. Mycorrhizal limonium sinuatum (L.) mill. Enhances accumulation of lead and cadmium. Sheikh-Assadi M; Khandan-Mirkohi A; Alemardan A; Moreno-Jiménez E Int J Phytoremediation; 2015; 17(1-6):556-62. PubMed ID: 25747242 [TBL] [Abstract][Full Text] [Related]
6. Potential of Taraxacum mongolicum Hand-Mazz for accelerating phytoextraction of cadmium in combination with eco-friendly amendments. Wei S; Wang S; Zhou Q; Zhan J; Ma L; Wu Z; Sun T; Prasad MN J Hazard Mater; 2010 Sep; 181(1-3):480-4. PubMed ID: 20570438 [TBL] [Abstract][Full Text] [Related]
7. Effect of arbuscular mycorrhizal fungal inoculation on heavy metal accumulation of maize grown in a naturally contaminated soil. Wang FY; Lin XG; Yin R Int J Phytoremediation; 2007; 9(4):345-53. PubMed ID: 18246710 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of mycorrhizal influence on the development and phytoremediation potential of Canavalia gladiata in Pb-contaminated soils. Souza LA; Andrade SA; Souza SC; Schiavinato MA Int J Phytoremediation; 2013; 15(5):465-76. PubMed ID: 23488172 [TBL] [Abstract][Full Text] [Related]
9. [Effects of Arbuscular Mycorrhizal Fungi on the Growth and Uptake of La and Pb by Maize Grown in La and Pb-Contaminated Soil]. Chang Q; Guo W; Pan L; Wang QF; Zhou XN; Yang L; Li E Huan Jing Ke Xue; 2017 Sep; 38(9):3915-3926. PubMed ID: 29965275 [TBL] [Abstract][Full Text] [Related]
10. Effect of arbuscular mycorrhizal fungi on trace metal uptake by sunflower plants grown on cadmium contaminated soil. Hassan SE; Hijri M; St-Arnaud M N Biotechnol; 2013 Sep; 30(6):780-7. PubMed ID: 23876814 [TBL] [Abstract][Full Text] [Related]
11. Fluorescent pseudomonads occurring in Macrotermes subhyalinus mound structures decrease Cd toxicity and improve its accumulation in sorghum plants. Duponnois R; Kisa M; Assigbetse K; Prin Y; Thioulouse J; Issartel M; Moulin P; Lepage M Sci Total Environ; 2006 Nov; 370(2-3):391-400. PubMed ID: 16989893 [TBL] [Abstract][Full Text] [Related]
12. Potential contribution of arbuscular mycorrhiza to cadmium immobilisation in soil. Janousková M; Pavlíková D; Vosátka M Chemosphere; 2006 Dec; 65(11):1959-65. PubMed ID: 16905176 [TBL] [Abstract][Full Text] [Related]
13. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. Schützendübel A; Polle A J Exp Bot; 2002 May; 53(372):1351-65. PubMed ID: 11997381 [TBL] [Abstract][Full Text] [Related]
14. Effects of arbuscular mycorrhizal symbiosis on growth, nutrient and metal uptake by maize seedlings (Zea mays L.) grown in soils spiked with Lanthanum and Cadmium. Chang Q; Diao FW; Wang QF; Pan L; Dang ZH; Guo W Environ Pollut; 2018 Oct; 241():607-615. PubMed ID: 29886381 [TBL] [Abstract][Full Text] [Related]
15. Effect of fertilizer amendments on phytoremediation of Cd-contaminated soil by a newly discovered hyperaccumulator Solanum nigrum L. Wei S; Li Y; Zhou Q; Srivastava M; Chiu S; Zhan J; Wu Z; Sun T J Hazard Mater; 2010 Apr; 176(1-3):269-73. PubMed ID: 19951826 [TBL] [Abstract][Full Text] [Related]
16. Effects of soil amendments on the extractability and speciation of cadmium, lead, and copper in a contaminated soil. Lin D; Zhou Q Bull Environ Contam Toxicol; 2009 Jul; 83(1):136-40. PubMed ID: 19381428 [TBL] [Abstract][Full Text] [Related]
17. Effects of cadmium amendments on low-molecular-weight organic acid exudates in rhizosphere soils of tobacco and sunflower. Chiang PN; Wang MK; Chiu CY; Chou SY Environ Toxicol; 2006 Oct; 21(5):479-88. PubMed ID: 16944509 [TBL] [Abstract][Full Text] [Related]
18. Arbuscular mycorrhizal fungi alleviate the heavy metal toxicity on sunflower (Helianthus annuus L.) plants cultivated on a heavily contaminated field soil at a WEEE-recycling site. Zhang Y; Hu J; Bai J; Wang J; Yin R; Wang J; Lin X Sci Total Environ; 2018 Jul; 628-629():282-290. PubMed ID: 29438937 [TBL] [Abstract][Full Text] [Related]
19. Arbuscular mycorrhiza augments cadmium tolerance in soybean by altering accumulation and partitioning of nutrient elements, and related gene expression. Cui G; Ai S; Chen K; Wang X Ecotoxicol Environ Saf; 2019 Apr; 171():231-239. PubMed ID: 30612010 [TBL] [Abstract][Full Text] [Related]
20. Effects of arbuscular mycorrhizal inoculation and biochar amendment on maize growth, cadmium uptake and soil cadmium speciation in Cd-contaminated soil. Liu L; Li J; Yue F; Yan X; Wang F; Bloszies S; Wang Y Chemosphere; 2018 Mar; 194():495-503. PubMed ID: 29241123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]