These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 23407952)

  • 1. Recurrent connectivity can account for the dynamics of disparity processing in V1.
    Samonds JM; Potetz BR; Tyler CW; Lee TS
    J Neurosci; 2013 Feb; 33(7):2934-46. PubMed ID: 23407952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Responses of primary visual cortical neurons to binocular disparity without depth perception.
    Cumming BG; Parker AJ
    Nature; 1997 Sep; 389(6648):280-3. PubMed ID: 9305841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative analysis of the responses of V1 neurons to horizontal disparity in dynamic random-dot stereograms.
    Prince SJ; Pointon AD; Cumming BG; Parker AJ
    J Neurophysiol; 2002 Jan; 87(1):191-208. PubMed ID: 11784742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rejection of false matches for binocular correspondence in macaque visual cortical area V4.
    Tanabe S; Umeda K; Fujita I
    J Neurosci; 2004 Sep; 24(37):8170-80. PubMed ID: 15371518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disparity Sensitivity and Binocular Integration in Mouse Visual Cortex Areas.
    La Chioma A; Bonhoeffer T; Hübener M
    J Neurosci; 2020 Nov; 40(46):8883-8899. PubMed ID: 33051348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple model accounts for the response of disparity-tuned V1 neurons to anticorrelated images.
    Read JC; Parker AJ; Cumming BG
    Vis Neurosci; 2002; 19(6):735-53. PubMed ID: 12688669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Single Mechanism Can Account for Human Perception of Depth in Mixed Correlation Random Dot Stereograms.
    Henriksen S; Cumming BG; Read JC
    PLoS Comput Biol; 2016 May; 12(5):e1004906. PubMed ID: 27196696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence of Stereoscopic Surface Disambiguation in the Responses of V1 Neurons.
    Samonds JM; Tyler CW; Lee TS
    Cereb Cortex; 2017 Mar; 27(3):2260-2275. PubMed ID: 26965904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Range and mechanism of encoding of horizontal disparity in macaque V1.
    Prince SJ; Cumming BG; Parker AJ
    J Neurophysiol; 2002 Jan; 87(1):209-21. PubMed ID: 11784743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial frequency integration for binocular correspondence in macaque area V4.
    Kumano H; Tanabe S; Fujita I
    J Neurophysiol; 2008 Jan; 99(1):402-8. PubMed ID: 17959744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperative and competitive interactions facilitate stereo computations in macaque primary visual cortex.
    Samonds JM; Potetz BR; Lee TS
    J Neurosci; 2009 Dec; 29(50):15780-95. PubMed ID: 20016094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppressive mechanisms in monkey V1 help to solve the stereo correspondence problem.
    Tanabe S; Haefner RM; Cumming BG
    J Neurosci; 2011 Jun; 31(22):8295-305. PubMed ID: 21632950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms underlying the transformation of disparity signals from V1 to V2 in the macaque.
    Tanabe S; Cumming BG
    J Neurosci; 2008 Oct; 28(44):11304-14. PubMed ID: 18971472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Testing quantitative models of binocular disparity selectivity in primary visual cortex.
    Read JC; Cumming BG
    J Neurophysiol; 2003 Nov; 90(5):2795-817. PubMed ID: 12867533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pooled, but not single-neuron, responses in macaque V4 represent a solution to the stereo correspondence problem.
    Abdolrahmani ا M; Doi T; Shiozaki HM; Fujita I
    J Neurophysiol; 2016 Apr; 115(4):1917-31. PubMed ID: 26843595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurons in Striate Cortex Signal Disparity in Half-Matched Random-Dot Stereograms.
    Henriksen S; Read JC; Cumming BG
    J Neurosci; 2016 Aug; 36(34):8967-76. PubMed ID: 27559177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strong tuning for stereoscopic depth indicates orientation-specific recurrent circuitry in tree shrew V1.
    Tanabe S; Fu J; Cang J
    Curr Biol; 2022 Dec; 32(24):5274-5284.e6. PubMed ID: 36417902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coding of horizontal disparity and velocity by MT neurons in the alert macaque.
    DeAngelis GC; Uka T
    J Neurophysiol; 2003 Feb; 89(2):1094-111. PubMed ID: 12574483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ocular dominance predicts neither strength nor class of disparity selectivity with random-dot stimuli in primate V1.
    Read JC; Cumming BG
    J Neurophysiol; 2004 Mar; 91(3):1271-81. PubMed ID: 14523074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Encoding of binocular disparity by complex cells in the cat's visual cortex.
    Ohzawa I; DeAngelis GC; Freeman RD
    J Neurophysiol; 1997 Jun; 77(6):2879-909. PubMed ID: 9212245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.