These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 23407969)

  • 1. Synaptic cooperativity regulates persistent network activity in neocortex.
    Favero M; Castro-Alamancos MA
    J Neurosci; 2013 Feb; 33(7):3151-63. PubMed ID: 23407969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of persistent cortical activity (up States) on intracortical and thalamocortical synaptic inputs.
    Rigas P; Castro-Alamancos MA
    J Neurophysiol; 2009 Jul; 102(1):119-31. PubMed ID: 19403750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thalamocortical Up states: differential effects of intrinsic and extrinsic cortical inputs on persistent activity.
    Rigas P; Castro-Alamancos MA
    J Neurosci; 2007 Apr; 27(16):4261-72. PubMed ID: 17442810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMDA receptors are the basis for persistent network activity in neocortex slices.
    Castro-Alamancos MA; Favero M
    J Neurophysiol; 2015 Jun; 113(10):3816-26. PubMed ID: 25878152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of sensory thalamocortical synaptic networks during information processing states.
    Castro-Alamancos MA
    Prog Neurobiol; 2004 Nov; 74(4):213-47. PubMed ID: 15556288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adult thalamocortical transmission involves both NMDA and non-NMDA receptors.
    Gil Z; Amitai Y
    J Neurophysiol; 1996 Oct; 76(4):2547-54. PubMed ID: 8899626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for proportional synaptic scaling in neocortex of intact animals.
    Gil Z; Amitai Y
    Neuroreport; 2000 Dec; 11(18):4027-31. PubMed ID: 11192623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex.
    Cruikshank SJ; Lewis TJ; Connors BW
    Nat Neurosci; 2007 Apr; 10(4):462-8. PubMed ID: 17334362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cortical up and activated states: implications for sensory information processing.
    Castro-Alamancos MA
    Neuroscientist; 2009 Dec; 15(6):625-34. PubMed ID: 19321459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neocortex network activation and deactivation states controlled by the thalamus.
    Hirata A; Castro-Alamancos MA
    J Neurophysiol; 2010 Mar; 103(3):1147-57. PubMed ID: 20053845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast-spike interneurons and feedforward inhibition in awake sensory neocortex.
    Swadlow HA
    Cereb Cortex; 2003 Jan; 13(1):25-32. PubMed ID: 12466212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of cortical network activity on short-term synaptic depression.
    Reig R; Gallego R; Nowak LG; Sanchez-Vives MV
    Cereb Cortex; 2006 May; 16(5):688-95. PubMed ID: 16107589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gain modulation of synaptic inputs by network state in auditory cortex in vivo.
    Reig R; Zerlaut Y; Vergara R; Destexhe A; Sanchez-Vives MV
    J Neurosci; 2015 Feb; 35(6):2689-702. PubMed ID: 25673859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relief of synaptic depression produces long-term enhancement in thalamocortical networks.
    Hirata A; Castro-Alamancos MA
    J Neurophysiol; 2006 Apr; 95(4):2479-91. PubMed ID: 16381803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathway-specific feedforward circuits between thalamus and neocortex revealed by selective optical stimulation of axons.
    Cruikshank SJ; Urabe H; Nurmikko AV; Connors BW
    Neuron; 2010 Jan; 65(2):230-45. PubMed ID: 20152129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linear transformation of thalamocortical input by intracortical excitation.
    Li YT; Ibrahim LA; Liu BH; Zhang LI; Tao HW
    Nat Neurosci; 2013 Sep; 16(9):1324-30. PubMed ID: 23933750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional synaptic projections onto subplate neurons in neonatal rat somatosensory cortex.
    Hanganu IL; Kilb W; Luhmann HJ
    J Neurosci; 2002 Aug; 22(16):7165-76. PubMed ID: 12177212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-fibrillar beta-amyloid abates spike-timing-dependent synaptic potentiation at excitatory synapses in layer 2/3 of the neocortex by targeting postsynaptic AMPA receptors.
    Shemer I; Holmgren C; Min R; Fülöp L; Zilberter M; Sousa KM; Farkas T; Härtig W; Penke B; Burnashev N; Tanila H; Zilberter Y; Harkany T
    Eur J Neurosci; 2006 Apr; 23(8):2035-47. PubMed ID: 16630051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synchronized oscillations caused by disinhibition in rodent neocortex are generated by recurrent synaptic activity mediated by AMPA receptors.
    Castro-Alamancos MA; Rigas P
    J Physiol; 2002 Jul; 542(Pt 2):567-81. PubMed ID: 12122154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synchronized gamma-frequency inhibition in neocortex depends on excitatory-inhibitory interactions but not electrical synapses.
    Neske GT; Connors BW
    J Neurophysiol; 2016 Aug; 116(2):351-68. PubMed ID: 27121576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.