These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
419 related articles for article (PubMed ID: 23408095)
21. MD-2 residues tyrosine 42, arginine 69, aspartic acid 122, and leucine 125 provide species specificity for lipid IVA. Meng J; Drolet JR; Monks BG; Golenbock DT J Biol Chem; 2010 Sep; 285(36):27935-43. PubMed ID: 20592019 [TBL] [Abstract][Full Text] [Related]
22. Glycyrrhizin and isoliquiritigenin suppress the LPS sensor toll-like receptor 4/MD-2 complex signaling in a different manner. Honda H; Nagai Y; Matsunaga T; Saitoh S; Akashi-Takamura S; Hayashi H; Fujii I; Miyake K; Muraguchi A; Takatsu K J Leukoc Biol; 2012 Jun; 91(6):967-76. PubMed ID: 22422925 [TBL] [Abstract][Full Text] [Related]
23. Conformationally constrained lipid A mimetics for exploration of structural basis of TLR4/MD-2 activation by lipopolysaccharide. Artner D; Oblak A; Ittig S; Garate JA; Horvat S; Arrieumerlou C; Hofinger A; Oostenbrink C; Jerala R; Kosma P; Zamyatina A ACS Chem Biol; 2013 Nov; 8(11):2423-32. PubMed ID: 23952219 [TBL] [Abstract][Full Text] [Related]
24. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Park BS; Song DH; Kim HM; Choi BS; Lee H; Lee JO Nature; 2009 Apr; 458(7242):1191-5. PubMed ID: 19252480 [TBL] [Abstract][Full Text] [Related]
25. Differential host response to LPS variants in amniochorion and the TLR4/MD-2 system in Macaca nemestrina. Chang J; Jain S; Carl DJ; Paolella L; Darveau RP; Gravett MG; Adams Waldorf KM Placenta; 2010 Sep; 31(9):811-7. PubMed ID: 20619890 [TBL] [Abstract][Full Text] [Related]
26. Stable transduction of bovine TLR4 and bovine MD-2 into LPS-nonresponsive cells and soluble CD14 promote the ability to respond to LPS. Sauter KS; Brcic M; Franchini M; Jungi TW Vet Immunol Immunopathol; 2007 Jul; 118(1-2):92-104. PubMed ID: 17559944 [TBL] [Abstract][Full Text] [Related]
27. Differential activation of human and mouse Toll-like receptor 4 by the adjuvant candidate LpxL1 of Neisseria meningitidis. Steeghs L; Keestra AM; van Mourik A; Uronen-Hansson H; van der Ley P; Callard R; Klein N; van Putten JP Infect Immun; 2008 Aug; 76(8):3801-7. PubMed ID: 18490457 [TBL] [Abstract][Full Text] [Related]
28. The molecular mechanism of species-specific recognition of lipopolysaccharides by the MD-2/TLR4 receptor complex. Oblak A; Jerala R Mol Immunol; 2015 Feb; 63(2):134-42. PubMed ID: 25037631 [TBL] [Abstract][Full Text] [Related]
29. Fatty acids modulate Toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner. Wong SW; Kwon MJ; Choi AM; Kim HP; Nakahira K; Hwang DH J Biol Chem; 2009 Oct; 284(40):27384-92. PubMed ID: 19648648 [TBL] [Abstract][Full Text] [Related]
30. Substitution of the Bordetella pertussis lipid A phosphate groups with glucosamine is required for robust NF-kappaB activation and release of proinflammatory cytokines in cells expressing human but not murine Toll-like receptor 4-MD-2-CD14. Marr N; Hajjar AM; Shah NR; Novikov A; Yam CS; Caroff M; Fernandez RC Infect Immun; 2010 May; 78(5):2060-9. PubMed ID: 20176798 [TBL] [Abstract][Full Text] [Related]
31. Human Toll-like receptor 4 recognizes host-specific LPS modifications. Hajjar AM; Ernst RK; Tsai JH; Wilson CB; Miller SI Nat Immunol; 2002 Apr; 3(4):354-9. PubMed ID: 11912497 [TBL] [Abstract][Full Text] [Related]
32. Structural regions of MD-2 that determine the agonist-antagonist activity of lipid IVa. Muroi M; Tanamoto K J Biol Chem; 2006 Mar; 281(9):5484-91. PubMed ID: 16407172 [TBL] [Abstract][Full Text] [Related]
33. Tetraacylated lipid A and paclitaxel-selective activation of TLR4/MD-2 conferred through hydrophobic interactions. Resman N; Oblak A; Gioannini TL; Weiss JP; Jerala R J Immunol; 2014 Feb; 192(4):1887-95. PubMed ID: 24420921 [TBL] [Abstract][Full Text] [Related]
34. Lipopolysaccharide-binding protein-mediated Toll-like receptor 4 dimerization enables rapid signal transduction against lipopolysaccharide stimulation on membrane-associated CD14-expressing cells. Tsukamoto H; Fukudome K; Takao S; Tsuneyoshi N; Kimoto M Int Immunol; 2010 Apr; 22(4):271-80. PubMed ID: 20133493 [TBL] [Abstract][Full Text] [Related]
35. Anti-endotoxic activity and structural basis for human MD-2·TLR4 antagonism of tetraacylated lipid A mimetics based on βGlcN(1↔1)αGlcN scaffold. Garate JA; Stöckl J; Fernández-Alonso Mdel C; Artner D; Haegman M; Oostenbrink C; Jiménez-Barbero J; Beyaert R; Heine H; Kosma P; Zamyatina A Innate Immun; 2015 Jul; 21(5):490-503. PubMed ID: 25394365 [TBL] [Abstract][Full Text] [Related]
36. Postulates for validating TLR4 agonists. Manček-Keber M; Jerala R Eur J Immunol; 2015 Feb; 45(2):356-70. PubMed ID: 25476977 [TBL] [Abstract][Full Text] [Related]
37. Energetics of Endotoxin Recognition in the Toll-Like Receptor 4 Innate Immune Response. Paramo T; Tomasio SM; Irvine KL; Bryant CE; Bond PJ Sci Rep; 2015 Dec; 5():17997. PubMed ID: 26647780 [TBL] [Abstract][Full Text] [Related]
38. Preparation and characterization of truncated human lipopolysaccharide-binding protein in Escherichia coli. Kohara J; Tsuneyoshi N; Gauchat JF; Kimoto M; Fukudome K Protein Expr Purif; 2006 Oct; 49(2):276-83. PubMed ID: 16839777 [TBL] [Abstract][Full Text] [Related]