These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 23408154)

  • 1. Factors involved in the rise of phosphoenolpyruvate carboxylase-kinase activity caused by salinity in sorghum leaves.
    Monreal JA; Arias-Baldrich C; Pérez-Montaño F; Gandullo J; Echevarría C; García-Mauriño S
    Planta; 2013 May; 237(5):1401-13. PubMed ID: 23408154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric oxide regulation of leaf phosphoenolpyruvate carboxylase-kinase activity: implication in sorghum responses to salinity.
    Monreal JA; Arias-Baldrich C; Tossi V; Feria AB; Rubio-Casal A; García-Mata C; Lamattina L; García-Mauriño S
    Planta; 2013 Nov; 238(5):859-69. PubMed ID: 23913013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of LiCl on phosphoenolpyruvate carboxylase kinase and the phosphorylation of phosphoenolpyruvate carboxylase in leaf disks and leaves of Sorghum vulgare.
    Monreal JA; López-Baena FJ; Vidal J; Echevarría C; García-Mauriño S
    Planta; 2007 Mar; 225(4):801-12. PubMed ID: 16983537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Salinity promotes opposite patterns of carbonylation and nitrosylation of C
    Baena G; Feria AB; Echevarría C; Monreal JA; García-Mauriño S
    Planta; 2017 Dec; 246(6):1203-1214. PubMed ID: 28828537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of phospholipase D and phosphatidic acid in the light-dependent up-regulation of sorghum leaf phosphoenolpyruvate carboxylase-kinase.
    Monreal JA; López-Baena FJ; Vidal J; Echevarría C; García-Mauriño S
    J Exp Bot; 2010 Jun; 61(10):2819-27. PubMed ID: 20410319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Salt stress increases the Ca2+-independent phosphoenolpyruvate carboxylase kinase activity in Sorghum leaves.
    Echevarría C; Garcia-Mauriño S; Alvarez R; Soler A; Vidal J
    Planta; 2001 Dec; 214(2):283-7. PubMed ID: 11800393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of salt stress-enhanced phosphoenolpyruvate carboxylase kinase activity in leaves of Sorghum vulgare: independence from osmotic stress, involvement of ion toxicity and significance of dark phosphorylation.
    García-Mauriño S; Monreal JA; Alvarez R; Vidal J; Echevarría C
    Planta; 2003 Feb; 216(4):648-55. PubMed ID: 12569407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ABA modulates the degradation of phosphoenolpyruvate carboxylase kinase in sorghum leaves.
    Monreal JA; Feria AB; Vinardell JM; Vidal J; Echevarría C; García-Mauriño S
    FEBS Lett; 2007 Jul; 581(18):3468-72. PubMed ID: 17618627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct patterns of control and expression amongst members of the PEP carboxylase kinase gene family in C4 plants.
    Shenton M; Fontaine V; Hartwell J; Marsh JT; Jenkins GI; Nimmo HG
    Plant J; 2006 Oct; 48(1):45-53. PubMed ID: 16925599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic activity, gene expression and posttranslational modifications of photosynthetic and non-photosynthetic phosphoenolpyruvate carboxylase in ammonium-stressed sorghum plants.
    Arias-Baldrich C; de la Osa C; Bosch N; Ruiz-Ballesta I; Monreal JA; García-Mauriño S
    J Plant Physiol; 2017 Jul; 214():39-47. PubMed ID: 28431276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulatory phosphorylation of Sorghum leaf phosphoenolpyruvate carboxylase. Identification of the protein-serine kinase and some elements of the signal-transduction cascade.
    Bakrim N; Echevarria C; Cretin C; Arrio-Dupont M; Pierre JN; Vidal J; Chollet R; Gadal P
    Eur J Biochem; 1992 Mar; 204(2):821-30. PubMed ID: 1311681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptation responses in C4 photosynthesis of maize under salinity.
    Omoto E; Taniguchi M; Miyake H
    J Plant Physiol; 2012 Mar; 169(5):469-77. PubMed ID: 22209164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photosynthesis with single-rooted Amaranthus leaves. II. Regulation of ribuelose-1,5-bisphosphate carboxylase, phosphoenolpyruvate carboxylase, NAD-malic enzyme and NAD-malate dehydrogenase and coordination between PCR and C4 photosynthetic metabolism in response to changes in the source-sink balance.
    Sawada S; Sakamoto T; Sato M; Kasai M; Usuda H
    Plant Cell Physiol; 2002 Nov; 43(11):1293-301. PubMed ID: 12461129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silencing of Sb
    Pérez-López J; Feria AB; Gandullo J; de la Osa C; Jiménez-Guerrero I; Echevarría C; Monreal JA; García-Mauriño S
    Plants (Basel); 2023 Jun; 12(13):. PubMed ID: 37446987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of C(4) phosphoenolpyruvate carboxylase in the genus Alternanthera: gene families and the enzymatic characteristics of the C(4) isozyme and its orthologues in C(3) and C(3)/C(4) Alternantheras.
    Gowik U; Engelmann S; Bläsing OE; Raghavendra AS; Westhoff P
    Planta; 2006 Jan; 223(2):359-68. PubMed ID: 16136331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A conserved 19-amino acid synthetic peptide from the carboxy terminus of phosphoenolpyruvate carboxylase inhibits the in vitro phosphorylation of the enzyme by the calcium-independent phosphoenolpyruvate carboxylase kinase.
    Alvarez R; García-Mauriño S; Feria AB; Vidal J; Echevarría C
    Plant Physiol; 2003 Jun; 132(2):1097-106. PubMed ID: 12805637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Salt Stress Increases the Level of Translatable mRNA for Phosphoenolpyruvate Carboxylase in Mesembryanthemum crystallinum.
    Ostrem JA; Olson SW; Schmitt JM; Bohnert HJ
    Plant Physiol; 1987 Aug; 84(4):1270-5. PubMed ID: 16665596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulatory seryl-phosphorylation of C4 phosphoenolpyruvate carboxylase by a soluble protein kinase from maize leaves.
    Jiao JA; Chollet R
    Arch Biochem Biophys; 1989 Mar; 269(2):526-35. PubMed ID: 2493217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Salt tolerance and activity of antioxidative enzymes of transgenic finger millet overexpressing a vacuolar H(+)-pyrophosphatase gene (SbVPPase) from Sorghum bicolor.
    Anjaneyulu E; Reddy PS; Sunita MS; Kishor PB; Meriga B
    J Plant Physiol; 2014 Jun; 171(10):789-98. PubMed ID: 24877670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of Phosphoenolpyruvate Carboxylase and Crassulacean Acid Metabolism Induction in Mesembryanthemum crystallinum L. by Cytokinin : Modulation of Leaf Gene Expression by Roots?
    Schmitt JM; Piepenbrock M
    Plant Physiol; 1992 Aug; 99(4):1664-9. PubMed ID: 16669088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.