These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 23408578)

  • 1. Linearity condition for orbital energies in density functional theory (III): benchmark of total energies.
    Imamura Y; Kobayashi R; Nakai H
    J Comput Chem; 2013 May; 34(14):1218-25. PubMed ID: 23408578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linearity condition for orbital energies in density functional theory: construction of orbital-specific hybrid functional.
    Imamura Y; Kobayashi R; Nakai H
    J Chem Phys; 2011 Mar; 134(12):124113. PubMed ID: 21456651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous Determination of Structures, Vibrations, and Frontier Orbital Energies from a Self-Consistent Range-Separated Hybrid Functional.
    Tamblyn I; Refaely-Abramson S; Neaton JB; Kronik L
    J Phys Chem Lett; 2014 Aug; 5(15):2734-41. PubMed ID: 26277972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orbital energies and negative electron affinities from density functional theory: Insight from the integer discontinuity.
    Teale AM; De Proft F; Tozer DJ
    J Chem Phys; 2008 Jul; 129(4):044110. PubMed ID: 18681637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On Koopmans' theorem in density functional theory.
    Tsuneda T; Song JW; Suzuki S; Hirao K
    J Chem Phys; 2010 Nov; 133(17):174101. PubMed ID: 21054000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of Tuning Methods for Enforcing Approximate Energy Linearity in Range-Separated Hybrid Functionals.
    Gledhill JD; Peach MJ; Tozer DJ
    J Chem Theory Comput; 2013 Oct; 9(10):4414-20. PubMed ID: 26589158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the accuracy of frozen density embedding calculations with hybrid and orbital-dependent functionals for non-bonded interaction energies.
    Laricchia S; Fabiano E; Della Sala F
    J Chem Phys; 2012 Jul; 137(1):014102. PubMed ID: 22779632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intermolecular potentials based on symmetry-adapted perturbation theory with dispersion energies from time-dependent density-functional calculations.
    Misquitta AJ; Podeszwa R; Jeziorski B; Szalewicz K
    J Chem Phys; 2005 Dec; 123(21):214103. PubMed ID: 16356035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semiempirical double-hybrid density functional with improved description of long-range correlation.
    Benighaus T; DiStasio RA; Lochan RC; Chai JD; Head-Gordon M
    J Phys Chem A; 2008 Mar; 112(12):2702-12. PubMed ID: 18318517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous benchmarking of ground- and excited-state properties with long-range-corrected density functional theory.
    Rohrdanz MA; Herbert JM
    J Chem Phys; 2008 Jul; 129(3):034107. PubMed ID: 18647016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions.
    Goerigk L; Grimme S
    Phys Chem Chem Phys; 2011 Apr; 13(14):6670-88. PubMed ID: 21384027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Core-excitation energy calculations with a long-range corrected hybrid exchange-correlation functional including a short-range Gaussian attenuation (LCgau-BOP).
    Song JW; Watson MA; Nakata A; Hirao K
    J Chem Phys; 2008 Nov; 129(18):184113. PubMed ID: 19045392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Piecewise linearity of approximate density functionals revisited: implications for frontier orbital energies.
    Kraisler E; Kronik L
    Phys Rev Lett; 2013 Mar; 110(12):126403. PubMed ID: 25166825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Away from generalized gradient approximation: orbital-dependent exchange-correlation functionals.
    Baerends EJ; Gritsenko OV
    J Chem Phys; 2005 Aug; 123(6):62202. PubMed ID: 16122288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Piecewise linearity and spectroscopic properties from Koopmans-compliant functionals.
    Dabo I; Ferretti A; Marzari N
    Top Curr Chem; 2014; 347():193-233. PubMed ID: 24531751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of the accuracy of density functionals for prediction of relative energies and geometries of low-lying isomers of water hexamers.
    Dahlke EE; Olson RM; Leverentz HR; Truhlar DG
    J Phys Chem A; 2008 May; 112(17):3976-84. PubMed ID: 18393474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-range corrected functionals satisfy Koopmans' theorem: calculation of correlation and relaxation energies.
    Kar R; Song JW; Hirao K
    J Comput Chem; 2013 Apr; 34(11):958-64. PubMed ID: 23299544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Databases for transition element bonding: metal-metal bond energies and bond lengths and their use to test hybrid, hybrid meta, and meta density functionals and generalized gradient approximations.
    Schultz NE; Zhao Y; Truhlar DG
    J Phys Chem A; 2005 May; 109(19):4388-403. PubMed ID: 16833770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orbital- and state-dependent functionals in density-functional theory.
    Görling A
    J Chem Phys; 2005 Aug; 123(6):62203. PubMed ID: 16122289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The performance and relationship among range-separated schemes for density functional theory.
    Nguyen KA; Day PN; Pachter R
    J Chem Phys; 2011 Aug; 135(7):074109. PubMed ID: 21861558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.