These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 23408647)
1. Humeral cross-sectional shape in suspensory primates and sloths. Patel BA; Ruff CB; Simons EL; Organ JM Anat Rec (Hoboken); 2013 Apr; 296(4):545-56. PubMed ID: 23408647 [TBL] [Abstract][Full Text] [Related]
2. The locomotion of Babakotia radofilai inferred from epiphyseal and diaphyseal morphology of the humerus and femur. Marchi D; Ruff CB; Capobianco A; Rafferty KL; Habib MB; Patel BA J Morphol; 2016 Sep; 277(9):1199-218. PubMed ID: 27324923 [TBL] [Abstract][Full Text] [Related]
3. Investigating the form-function interface in African apes: Relationships between principal moments of area and positional behaviors in femoral and humeral diaphyses. Carlson KJ Am J Phys Anthropol; 2005 Jul; 127(3):312-34. PubMed ID: 15584067 [TBL] [Abstract][Full Text] [Related]
4. Morphological affinities of the proximal humerus of Epipliopithecus vindobonensis and Pliopithecus antiquus: suspensory inferences based on a 3D geometric morphometrics approach. Arias-Martorell J; Alba DM; Potau JM; Bello-Hellegouarch G; Pérez-Pérez A J Hum Evol; 2015 Mar; 80():83-95. PubMed ID: 25234205 [TBL] [Abstract][Full Text] [Related]
5. Morphometric analysis of the distal humerus of some Cenozoic Catarrhines: the Late Divergence Hypothesis revisited. Feldesman MR Am J Phys Anthropol; 1982 Sep; 59(1):73-95. PubMed ID: 6814259 [TBL] [Abstract][Full Text] [Related]
6. Pump the brakes! The hindlimbs of three-toed sloths decelerate and support suspensory locomotion. McKamy AJ; Young MW; Mossor AM; Young JW; Avey-Arroyo JA; Granatosky MC; Butcher MT J Exp Biol; 2023 Apr; 226(8):. PubMed ID: 36942880 [TBL] [Abstract][Full Text] [Related]
7. A comparison of primate, carnivoran and rodent limb bone cross-sectional properties: are primates really unique? Polk JD; Demes B; Jungers WL; Biknevicius AR; Heinrich RE; Runestad JA J Hum Evol; 2000 Sep; 39(3):297-325. PubMed ID: 10964531 [TBL] [Abstract][Full Text] [Related]
8. Relationship between humeral geometry and shoulder muscle power among suspensory, knuckle-walking, and digitigrade/palmigrade quadrupedal primates. Kikuchi Y; Takemoto H; Kuraoka A J Anat; 2012 Jan; 220(1):29-41. PubMed ID: 22050714 [TBL] [Abstract][Full Text] [Related]
9. Long bone cross-sectional properties reflect changes in locomotor behavior in developing chimpanzees. Sarringhaus LA; MacLatchy LM; Mitani JC Am J Phys Anthropol; 2016 May; 160(1):16-29. PubMed ID: 26780478 [TBL] [Abstract][Full Text] [Related]
10. Three toes and three modes: Dynamics of terrestrial, suspensory, and vertical locomotion in brown-throated three-toed sloths (Bradypodidae, Xenarthra). Young MW; McKamy AJ; Dickinson E; Yarbro J; Ragupathi A; Guru N; Avey-Arroyo JA; Butcher MT; Granatosky MC J Exp Zool A Ecol Integr Physiol; 2023 May; 339(4):383-397. PubMed ID: 36747379 [TBL] [Abstract][Full Text] [Related]
11. Shape analysis of the proximal humerus in orthograde and semi-orthograde primates: correlates of suspensory behavior. Arias-Martorell J; Tallman M; Potau JM; Bello-Hellegouarch G; Pérez-Pérez A Am J Primatol; 2015 Jan; 77(1):1-19. PubMed ID: 25219580 [TBL] [Abstract][Full Text] [Related]
12. Does skeletal anatomy reflect adaptation to locomotor patterns? Cortical and trabecular architecture in human and nonhuman anthropoids. Shaw CN; Ryan TM Am J Phys Anthropol; 2012 Feb; 147(2):187-200. PubMed ID: 22120605 [TBL] [Abstract][Full Text] [Related]
13. Uniqueness of primate forelimb posture during quadrupedal locomotion. Larson SG; Schmitt D; Lemelin P; Hamrick M Am J Phys Anthropol; 2000 May; 112(1):87-101. PubMed ID: 10766946 [TBL] [Abstract][Full Text] [Related]
14. Muscular reconstruction and functional morphology of the forelimb of early Miocene sloths (Xenarthra, Folivora) of Patagonia. Toledo N; Bargo MS; Vizcaíno SF Anat Rec (Hoboken); 2013 Feb; 296(2):305-25. PubMed ID: 23193102 [TBL] [Abstract][Full Text] [Related]
15. Curvature, length, and cross-sectional geometry of the femur and humerus in anthropoid primates. Yamanaka A; Gunji H; Ishida H Am J Phys Anthropol; 2005 May; 127(1):46-57. PubMed ID: 15472892 [TBL] [Abstract][Full Text] [Related]
16. Long bone articular and diaphyseal structure in old world monkeys and apes. I: locomotor effects. Ruff CB Am J Phys Anthropol; 2002 Dec; 119(4):305-42. PubMed ID: 12448016 [TBL] [Abstract][Full Text] [Related]
17. Apparent density patterns in subchondral bone of the sloth and anteater forelimb. Patel BA; Carlson KJ Biol Lett; 2008 Oct; 4(5):486-9. PubMed ID: 18628113 [TBL] [Abstract][Full Text] [Related]
18. Mediolateral reaction forces and forelimb anatomy in quadrupedal primates: implications for interpreting locomotor behavior in fossil primates. Schmitt D J Hum Evol; 2003 Jan; 44(1):47-58. PubMed ID: 12604303 [TBL] [Abstract][Full Text] [Related]
19. A suspensory way of life: Integrating locomotion, postures, limb movements, and forces in two-toed sloths Choloepus didactylus (Megalonychidae, Folivora, Pilosa). Granatosky MC; Karantanis NE; Rychlik L; Youlatos D J Exp Zool A Ecol Integr Physiol; 2018 Dec; 329(10):570-588. PubMed ID: 30129260 [TBL] [Abstract][Full Text] [Related]
20. Changes in limb bone diaphyseal structure in chimpanzees during development. Bleuze MM Am J Biol Anthropol; 2024 Aug; 184(4):e24942. PubMed ID: 38602254 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]