These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

442 related articles for article (PubMed ID: 23408797)

  • 1. Hierarchical and spatially explicit clustering of DNA sequences with BAPS software.
    Cheng L; Connor TR; Sirén J; Aanensen DM; Corander J
    Mol Biol Evol; 2013 May; 30(5):1224-8. PubMed ID: 23408797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations.
    Corander J; Marttinen P; Sirén J; Tang J
    BMC Bioinformatics; 2008 Dec; 9():539. PubMed ID: 19087322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BAPS 2: enhanced possibilities for the analysis of genetic population structure.
    Corander J; Waldmann P; Marttinen P; Sillanpää MJ
    Bioinformatics; 2004 Oct; 20(15):2363-9. PubMed ID: 15073024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. T-BAPS: a Bayesian statistical tool for comparison of microbial communities using terminal-restriction fragment length polymorphism (T-RFLP) data.
    Tang J; Tao J; Urakawa H; Corander J
    Stat Appl Genet Mol Biol; 2007; 6():Article30. PubMed ID: 18052913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian semi-supervised classification of bacterial samples using MLST databases.
    Cheng L; Connor TR; Aanensen DM; Spratt BG; Corander J
    BMC Bioinformatics; 2011 Jul; 12():302. PubMed ID: 21791094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bayesian identification of admixture events using multilocus molecular markers.
    Corander J; Marttinen P
    Mol Ecol; 2006 Sep; 15(10):2833-43. PubMed ID: 16911204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying currents in the gene pool for bacterial populations using an integrative approach.
    Tang J; Hanage WP; Fraser C; Corander J
    PLoS Comput Biol; 2009 Aug; 5(8):e1000455. PubMed ID: 19662158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian modeling of recombination events in bacterial populations.
    Marttinen P; Baldwin A; Hanage WP; Dowson C; Mahenthiralingam E; Corander J
    BMC Bioinformatics; 2008 Oct; 9():421. PubMed ID: 18840286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution and population genomics of the Lyme borreliosis pathogen, Borrelia burgdorferi.
    Seifert SN; Khatchikian CE; Zhou W; Brisson D
    Trends Genet; 2015 Apr; 31(4):201-7. PubMed ID: 25765920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clustering 16S rRNA for OTU prediction: a method of unsupervised Bayesian clustering.
    Hao X; Jiang R; Chen T
    Bioinformatics; 2011 Mar; 27(5):611-8. PubMed ID: 21233169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Borrelia burgdorferi sensu stricto and Borrelia afzelii: Population structure and differential pathogenicity.
    Jungnick S; Margos G; Rieger M; Dzaferovic E; Bent SJ; Overzier E; Silaghi C; Walder G; Wex F; Koloczek J; Sing A; Fingerle V
    Int J Med Microbiol; 2015 Oct; 305(7):673-81. PubMed ID: 26341331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence typing reveals extensive strain diversity of the Lyme borreliosis agents Borrelia burgdorferi in North America and Borrelia afzelii in Europe.
    Bunikis J; Garpmo U; Tsao J; Berglund J; Fish D; Barbour AG
    Microbiology (Reading); 2004 Jun; 150(Pt 6):1741-1755. PubMed ID: 15184561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trans-Atlantic exchanges have shaped the population structure of the Lyme disease agent Borrelia burgdorferi sensu stricto.
    Castillo-Ramírez S; Fingerle V; Jungnick S; Straubinger RK; Krebs S; Blum H; Meinel DM; Hofmann H; Guertler P; Sing A; Margos G
    Sci Rep; 2016 Mar; 6():22794. PubMed ID: 26955886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geodemographic analysis of Borrelia burgdorferi sensu lato using the 5S-23S rDNA spacer region.
    Coipan EC; Fonville M; Tijsse-Klasen E; van der Giessen JW; Takken W; Sprong H; Takumi K
    Infect Genet Evol; 2013 Jul; 17():216-22. PubMed ID: 23602839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MLST of housekeeping genes captures geographic population structure and suggests a European origin of Borrelia burgdorferi.
    Margos G; Gatewood AG; Aanensen DM; Hanincová K; Terekhova D; Vollmer SA; Cornet M; Piesman J; Donaghy M; Bormane A; Hurn MA; Feil EJ; Fish D; Casjens S; Wormser GP; Schwartz I; Kurtenbach K
    Proc Natl Acad Sci U S A; 2008 Jun; 105(25):8730-5. PubMed ID: 18574151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bayesian analysis of genetic differentiation between populations.
    Corander J; Waldmann P; Sillanpää MJ
    Genetics; 2003 Jan; 163(1):367-74. PubMed ID: 12586722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differentiation of Borrelia burgdorferi sensu lato through groEL gene analysis.
    Lee SH; Lee JH; Park HS; Jang WJ; Koh SE; Yang YM; Kim BJ; Kook YH; Park KH
    FEMS Microbiol Lett; 2003 May; 222(1):51-7. PubMed ID: 12757946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BEAST: Bayesian evolutionary analysis by sampling trees.
    Drummond AJ; Rambaut A
    BMC Evol Biol; 2007 Nov; 7():214. PubMed ID: 17996036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bayesian clustering and feature selection for cancer tissue samples.
    Marttinen P; Myllykangas S; Corander J
    BMC Bioinformatics; 2009 Mar; 10():90. PubMed ID: 19296858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SlidingBayes: exploring recombination using a sliding window approach based on Bayesian phylogenetic inference.
    Paraskevis D; Deforche K; Lemey P; Magiorkinis G; Hatzakis A; Vandamme AM
    Bioinformatics; 2005 Apr; 21(7):1274-5. PubMed ID: 15546940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.