BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 23409089)

  • 1. Anent the genomics of spermatogenesis in Drosophila melanogaster.
    Lindsley DL; Roote J; Kennison JA
    PLoS One; 2013; 8(2):e55915. PubMed ID: 23409089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stage-specific expression profiling of Drosophila spermatogenesis suggests that meiotic sex chromosome inactivation drives genomic relocation of testis-expressed genes.
    Vibranovski MD; Lopes HF; Karr TL; Long M
    PLoS Genet; 2009 Nov; 5(11):e1000731. PubMed ID: 19936020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic analysis of viable Hsp90 alleles reveals a critical role in Drosophila spermatogenesis.
    Yue L; Karr TL; Nathan DF; Swift H; Srinivasan S; Lindquist S
    Genetics; 1999 Mar; 151(3):1065-79. PubMed ID: 10049923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic analysis of Drosophila melanogaster polytene chromosome region 44D-45F: loci required for viability and fertility.
    Mohr SE; Boswell RE
    Genetics; 2002 Apr; 160(4):1503-10. PubMed ID: 11973305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Paucity of genes on the Drosophila X chromosome showing male-biased expression.
    Parisi M; Nuttall R; Naiman D; Bouffard G; Malley J; Andrews J; Eastman S; Oliver B
    Science; 2003 Jan; 299(5607):697-700. PubMed ID: 12511656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X chromosome inactivation during Drosophila spermatogenesis.
    Hense W; Baines JF; Parsch J
    PLoS Biol; 2007 Oct; 5(10):e273. PubMed ID: 17927450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA-binding protein Maca is crucial for gigantic male fertility factor gene expression, spermatogenesis, and male fertility, in Drosophila.
    Zhu L; Fukunaga R
    PLoS Genet; 2021 Jun; 17(6):e1009655. PubMed ID: 34181646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward a comprehensive genetic analysis of male fertility in Drosophila melanogaster.
    Wakimoto BT; Lindsley DL; Herrera C
    Genetics; 2004 May; 167(1):207-16. PubMed ID: 15166148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward a molecular genetic analysis of spermatogenesis in Drosophila melanogaster: characterization of male-sterile mutants generated by single P element mutagenesis.
    Castrillon DH; Gönczy P; Alexander S; Rawson R; Eberhart CG; Viswanathan S; DiNardo S; Wasserman SA
    Genetics; 1993 Oct; 135(2):489-505. PubMed ID: 8244010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide patterns of expression in Drosophila pure species and hybrid males. II. Examination of multiple-species hybridizations, platforms, and life cycle stages.
    Moehring AJ; Teeter KC; Noor MA
    Mol Biol Evol; 2007 Jan; 24(1):137-45. PubMed ID: 17032727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic analysis of the brahma gene of Drosophila melanogaster and polytene chromosome subdivisions 72AB.
    Brizuela BJ; Elfring L; Ballard J; Tamkun JW; Kennison JA
    Genetics; 1994 Jul; 137(3):803-13. PubMed ID: 7916308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of X-linked lethal and viable male-sterile mutations in male gametogenesis of Drosophila melanogaster: genetic analysis.
    Lifschytz E; Yakobovitz N
    Mol Gen Genet; 1978 May; 161(3):275-84. PubMed ID: 97511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variation in the X:Autosome Distribution of Male-Biased Genes among Drosophila melanogaster Tissues and Its Relationship with Dosage Compensation.
    Huylmans AK; Parsch J
    Genome Biol Evol; 2015 Jun; 7(7):1960-71. PubMed ID: 26108491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene transposition as a cause of hybrid sterility in Drosophila.
    Masly JP; Jones CD; Noor MA; Locke J; Orr HA
    Science; 2006 Sep; 313(5792):1448-50. PubMed ID: 16960009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific down-regulation of spermatogenesis genes targeted by 22G RNAs in hybrid sterile males associated with an X-Chromosome introgression.
    Li R; Ren X; Bi Y; Ho VW; Hsieh CL; Young A; Zhang Z; Lin T; Zhao Y; Miao L; Sarkies P; Zhao Z
    Genome Res; 2016 Sep; 26(9):1219-32. PubMed ID: 27197225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear chromosome dynamics in the Drosophila male germ line contribute to the nonrandom genomic distribution of retrogenes.
    Díaz-Castillo C; Ranz JM
    Mol Biol Evol; 2012 Sep; 29(9):2105-8. PubMed ID: 22427708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid male-specific regulatory divergence and down regulation of spermatogenesis genes in Drosophila species hybrids.
    Ferguson J; Gomes S; Civetta A
    PLoS One; 2013; 8(4):e61575. PubMed ID: 23593487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Horka, a dominant mutation of Drosophila, induces nondisjunction and, through paternal effect, chromosome loss and genetic mosaics.
    Szabad J; Máthé E; Puro J
    Genetics; 1995 Apr; 139(4):1585-99. PubMed ID: 7789762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping Second Chromosome Mutations to Defined Genomic Regions in
    Kahsai L; Cook KR
    G3 (Bethesda); 2018 Jan; 8(1):9-16. PubMed ID: 29066472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interacting genes that affect microtubule function: the nc2 allele of the haywire locus fails to complement mutations in the testis-specific beta-tubulin gene of Drosophila.
    Regan CL; Fuller MT
    Genes Dev; 1988 Jan; 2(1):82-92. PubMed ID: 3128461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.