These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 23409130)
1. Interpolated compressed sensing for 2D multiple slice fast MR imaging. Pang Y; Zhang X PLoS One; 2013; 8(2):e56098. PubMed ID: 23409130 [TBL] [Abstract][Full Text] [Related]
2. Enhancement of the low resolution image quality using randomly sampled data for multi-slice MR imaging. Pang Y; Yu B; Zhang X Quant Imaging Med Surg; 2014 Apr; 4(2):136-44. PubMed ID: 24834426 [TBL] [Abstract][Full Text] [Related]
3. Prior data assisted compressed sensing: a novel MR imaging strategy for real time tracking of lung tumors. Yip E; Yun J; Wachowicz K; Heikal AA; Gabos Z; Rathee S; Fallone BG Med Phys; 2014 Aug; 41(8):082301. PubMed ID: 25086550 [TBL] [Abstract][Full Text] [Related]
4. Compressed Sensing SEMAC: 8-fold Accelerated High Resolution Metal Artifact Reduction MRI of Cobalt-Chromium Knee Arthroplasty Implants. Fritz J; Ahlawat S; Demehri S; Thawait GK; Raithel E; Gilson WD; Nittka M Invest Radiol; 2016 Oct; 51(10):666-76. PubMed ID: 27518214 [TBL] [Abstract][Full Text] [Related]
5. Six-Fold Acceleration of High-Spatial Resolution 3D SPACE MRI of the Knee Through Incoherent k-Space Undersampling and Iterative Reconstruction-First Experience. Fritz J; Raithel E; Thawait GK; Gilson W; Papp DF Invest Radiol; 2016 Jun; 51(6):400-9. PubMed ID: 26685106 [TBL] [Abstract][Full Text] [Related]
6. A robust adaptive sampling method for faster acquisition of MR images. Vellagoundar J; Machireddy RR Magn Reson Imaging; 2015 Jun; 33(5):635-43. PubMed ID: 25602686 [TBL] [Abstract][Full Text] [Related]
7. Identification of sampling patterns for high-resolution compressed sensing MRI of porous materials: 'learning' from X-ray microcomputed tomography data. Karlsons K; DE Kort DW; Sederman AJ; Mantle MD; DE Jong H; Appel M; Gladden LF J Microsc; 2019 Nov; 276(2):63-81. PubMed ID: 31587277 [TBL] [Abstract][Full Text] [Related]
8. A Slice-Low-Rank Plus Sparse (slice-L + S) Reconstruction Method for k-t Undersampled Multiband First-Pass Myocardial Perfusion MRI. Sun C; Robinson A; Wang Y; Bilchick KC; Kramer CM; Weller D; Salerno M; Epstein FH Magn Reson Med; 2022 Sep; 88(3):1140-1155. PubMed ID: 35608225 [TBL] [Abstract][Full Text] [Related]
9. Sliding window prior data assisted compressed sensing for MRI tracking of lung tumors. Yip E; Yun J; Wachowicz K; Gabos Z; Rathee S; Fallone BG Med Phys; 2017 Jan; 44(1):84-98. PubMed ID: 28102958 [TBL] [Abstract][Full Text] [Related]
10. Reducing acquisition time in clinical MRI by data undersampling and compressed sensing reconstruction. Hollingsworth KG Phys Med Biol; 2015 Nov; 60(21):R297-322. PubMed ID: 26448064 [TBL] [Abstract][Full Text] [Related]
11. Accelerating dynamic magnetic resonance imaging (MRI) for lung tumor tracking based on low-rank decomposition in the spatial-temporal domain: a feasibility study based on simulation and preliminary prospective undersampled MRI. Sarma M; Hu P; Rapacchi S; Ennis D; Thomas A; Lee P; Kupelian P; Sheng K Int J Radiat Oncol Biol Phys; 2014 Mar; 88(3):723-31. PubMed ID: 24412430 [TBL] [Abstract][Full Text] [Related]
12. Comparing an accelerated 3D fast spin-echo sequence (CS-SPACE) for knee 3-T magnetic resonance imaging with traditional 3D fast spin-echo (SPACE) and routine 2D sequences. Altahawi FF; Blount KJ; Morley NP; Raithel E; Omar IM Skeletal Radiol; 2017 Jan; 46(1):7-15. PubMed ID: 27744578 [TBL] [Abstract][Full Text] [Related]
13. Single patient convolutional neural networks for real-time MR reconstruction: coherent low-resolution versus incoherent undersampling. Dietz B; Yun J; Yip E; Gabos Z; Fallone BG; Wachowicz K Phys Med Biol; 2020 Apr; 65(8):08NT03. PubMed ID: 32135531 [TBL] [Abstract][Full Text] [Related]
14. Aliasing Artefact Suppression in Compressed Sensing MRI for Random Phase-Encode Undersampling. Yang Y; Liu F; Jin Z; Crozier S IEEE Trans Biomed Eng; 2015 Sep; 62(9):2215-23. PubMed ID: 25850083 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of Variable Density and Data-Driven K-Space Undersampling for Compressed Sensing Magnetic Resonance Imaging. Zijlstra F; Viergever MA; Seevinck PR Invest Radiol; 2016 Jun; 51(6):410-9. PubMed ID: 26674209 [TBL] [Abstract][Full Text] [Related]
16. Undersampling patterns in k-space for compressed sensing MRI using two-dimensional Cartesian sampling. Kojima S; Shinohara H; Hashimoto T; Suzuki S Radiol Phys Technol; 2018 Sep; 11(3):303-319. PubMed ID: 30078080 [TBL] [Abstract][Full Text] [Related]
17. An empirical study of the maximum degree of undersampling in compressed sensing for T Lazarus C; Weiss P; Vignaud A; Ciuciu P Magn Reson Imaging; 2018 Nov; 53():112-122. PubMed ID: 30036651 [TBL] [Abstract][Full Text] [Related]
18. 2D probabilistic undersampling pattern optimization for MR image reconstruction. Xue S; Cheng Z; Han G; Sun C; Fang K; Liu Y; Cheng J; Jin X; Bai R Med Image Anal; 2022 Apr; 77():102346. PubMed ID: 35030342 [TBL] [Abstract][Full Text] [Related]
19. Improved compressed sensing reconstruction for [Formula: see text]F magnetic resonance imaging. Kampf T; Sturm VJF; Basse-Lüsebrink TC; Fischer A; Buschle LR; Kurz FT; Schlemmer HP; Ziener CH; Heiland S; Bendszus M; Pham M; Stoll G; Jakob PM MAGMA; 2019 Feb; 32(1):63-77. PubMed ID: 30604144 [TBL] [Abstract][Full Text] [Related]
20. Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator. Qu X; Hou Y; Lam F; Guo D; Zhong J; Chen Z Med Image Anal; 2014 Aug; 18(6):843-56. PubMed ID: 24176973 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]