BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 23409289)

  • 1. Response to "Detailed aspects of redox signaling in cardiac physiology and pathology".
    Burgoyne JR; Din HM; Eaton P; Shah AM
    Circ Res; 2013 Jan; 112(1):e2. PubMed ID: 23409289
    [No Abstract]   [Full Text] [Related]  

  • 2. Oxidative regulation of the Na+ -K+ pump in cardiac physiology and pathology: clarifying the published evidence.
    Figtree GA; Rasmussen HH; Liu CC
    Circ Res; 2013 Jan; 112(1):e1. PubMed ID: 23287457
    [No Abstract]   [Full Text] [Related]  

  • 3. Redox signaling in cardiac physiology and pathology.
    Burgoyne JR; Mongue-Din H; Eaton P; Shah AM
    Circ Res; 2012 Sep; 111(8):1091-106. PubMed ID: 23023511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of NADPH oxidases in cardiac remodelling and heart failure.
    Sirker A; Zhang M; Murdoch C; Shah AM
    Am J Nephrol; 2007; 27(6):649-60. PubMed ID: 17901689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signaling pathways for cardiac hypertrophy and failure.
    Hunter JJ; Chien KR
    N Engl J Med; 1999 Oct; 341(17):1276-83. PubMed ID: 10528039
    [No Abstract]   [Full Text] [Related]  

  • 6. Mitochondrial adaptations to physiological vs. pathological cardiac hypertrophy.
    Abel ED; Doenst T
    Cardiovasc Res; 2011 May; 90(2):234-42. PubMed ID: 21257612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NADPH oxidase-dependent redox signalling in cardiac hypertrophy, remodelling and failure.
    Murdoch CE; Zhang M; Cave AC; Shah AM
    Cardiovasc Res; 2006 Jul; 71(2):208-15. PubMed ID: 16631149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tumor necrosis factor in myocardial hypertrophy and ischaemia--an anti-apoptotic perspective.
    Sack MN; Smith RM; Opie LH
    Cardiovasc Res; 2000 Feb; 45(3):688-95. PubMed ID: 10728390
    [No Abstract]   [Full Text] [Related]  

  • 9. Role of autocrine/paracrine mechanisms in response to myocardial strain.
    Cingolani HE; Ennis IL; Aiello EA; PĂ©rez NG
    Pflugers Arch; 2011 Jul; 462(1):29-38. PubMed ID: 21301862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel pathogenetic mechanisms in myocarditis: nitric oxide signaling.
    Kittleson MM; Lowenstein CJ; Hare JM
    Heart Fail Clin; 2005 Oct; 1(3):345-61. PubMed ID: 17386859
    [No Abstract]   [Full Text] [Related]  

  • 11. Stress-induced protein S-glutathionylation and phosphorylation crosstalk in cardiac sarcomeric proteins - Impact on heart function.
    Chakouri N; Reboul C; Boulghobra D; Kleindienst A; Nottin S; Gayrard S; Roubille F; Matecki S; Lacampagne A; Cazorla O
    Int J Cardiol; 2018 May; 258():207-216. PubMed ID: 29544934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wnt signaling is critical for maladaptive cardiac hypertrophy and accelerates myocardial remodeling.
    Malekar P; Hagenmueller M; Anyanwu A; Buss S; Streit MR; Weiss CS; Wolf D; Riffel J; Bauer A; Katus HA; Hardt SE
    Hypertension; 2010 Apr; 55(4):939-45. PubMed ID: 20177000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice.
    Patrick DM; Montgomery RL; Qi X; Obad S; Kauppinen S; Hill JA; van Rooij E; Olson EN
    J Clin Invest; 2010 Nov; 120(11):3912-6. PubMed ID: 20978354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Negative inotropic effects of C-type natriuretic peptide are attenuated in hypertrophied ventricular myocytes associated with reduced cyclic GMP production.
    Moalem J; Davidov T; Zhang Q; Grover GJ; Weiss HR; Scholz PM
    J Surg Res; 2006 Sep; 135(1):38-44. PubMed ID: 16600302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Double-edged sword effect of PKC during myocardial hypertrophy].
    Yu ZB; Wang YY; Zhang R
    Sheng Li Ke Xue Jin Zhan; 2007 Oct; 38(4):339-42. PubMed ID: 18232306
    [No Abstract]   [Full Text] [Related]  

  • 16. Cardiac hypertrophy. Mechanical, neural, and endocrine dependence.
    Morgan HE; Baker KM
    Circulation; 1991 Jan; 83(1):13-25. PubMed ID: 1824620
    [No Abstract]   [Full Text] [Related]  

  • 17. Hypertrophic phenotype in cardiac cell assemblies solely by structural cues and ensuing self-organization.
    Chung CY; Bien H; Sobie EA; Dasari V; McKinnon D; Rosati B; Entcheva E
    FASEB J; 2011 Mar; 25(3):851-62. PubMed ID: 21084696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myostatin, the cardiac chalone of insulin-like growth factor-1.
    Gaussin V; Depre C
    Cardiovasc Res; 2005 Dec; 68(3):347-9. PubMed ID: 16226233
    [No Abstract]   [Full Text] [Related]  

  • 19. The molecular basis for distinct beta-adrenergic receptor subtype actions in cardiomyocytes.
    Steinberg SF
    Circ Res; 1999 Nov; 85(11):1101-11. PubMed ID: 10571542
    [No Abstract]   [Full Text] [Related]  

  • 20. Alcohol Dehydrogenase Protects against Endoplasmic Reticulum Stress-Induced Myocardial Contractile Dysfunction via Attenuation of Oxidative Stress and Autophagy: Role of PTEN-Akt-mTOR Signaling.
    Pang J; Fuller ND; Hu N; Barton LA; Henion JM; Guo R; Chen Y; Ren J
    PLoS One; 2016; 11(1):e0147322. PubMed ID: 26807981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.