These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 23409873)
1. Structural, kinetic and chemical mechanism of isocitrate dehydrogenase-1 from Mycobacterium tuberculosis. Quartararo CE; Hazra S; Hadi T; Blanchard JS Biochemistry; 2013 Mar; 52(10):1765-75. PubMed ID: 23409873 [TBL] [Abstract][Full Text] [Related]
2. Characterizing Lysine Acetylation of Isocitrate Dehydrogenase in Escherichia coli. Venkat S; Chen H; Stahman A; Hudson D; McGuire P; Gan Q; Fan C J Mol Biol; 2018 Jun; 430(13):1901-1911. PubMed ID: 29733852 [TBL] [Abstract][Full Text] [Related]
3. Structural basis of the substrate specificity of bifunctional isocitrate dehydrogenase kinase/phosphatase. Yates SP; Edwards TE; Bryan CM; Stein AJ; Van Voorhis WC; Myler PJ; Stewart LJ; Zheng J; Jia Z Biochemistry; 2011 Sep; 50(38):8103-6. PubMed ID: 21870819 [TBL] [Abstract][Full Text] [Related]
4. Novel protein acetyltransferase, Rv2170, modulates carbon and energy metabolism in Mycobacterium tuberculosis. Lee W; VanderVen BC; Walker S; Russell DG Sci Rep; 2017 Mar; 7(1):72. PubMed ID: 28250431 [TBL] [Abstract][Full Text] [Related]
5. Determination of phosphorylation sites for NADP-specific isocitrate dehydrogenase from mycobacterium tuberculosis. Vinekar R; Ghosh I J Biomol Struct Dyn; 2009 Jun; 26(6):741-54. PubMed ID: 19385702 [TBL] [Abstract][Full Text] [Related]
6. Control of isocitrate dehydrogenase catalytic activity by protein phosphorylation in Escherichia coli. Cozzone AJ; El-Mansi M J Mol Microbiol Biotechnol; 2005; 9(3-4):132-46. PubMed ID: 16415587 [TBL] [Abstract][Full Text] [Related]
8. Expression, purification, and substrate specificity of isocitrate dehydrogenase from Thermus thermophilus HB8. Miyazaki K; Yaoi T; Oshima T Eur J Biochem; 1994 May; 221(3):899-903. PubMed ID: 8181473 [TBL] [Abstract][Full Text] [Related]
9. Determinants of performance in the isocitrate dehydrogenase of Escherichia coli. Dean AM; Shiau AK; Koshland DE Protein Sci; 1996 Feb; 5(2):341-7. PubMed ID: 8745412 [TBL] [Abstract][Full Text] [Related]
10. Two NAD+-isocitrate dehydrogenase forms in Phycomyces blakesleeanus. Induction in response to acetate growth and characterization, kinetics, and regulation of both enzyme forms. Alvarez-Villafañe E; Soler J; del Valle P; Busto F; de Arriaga D Biochemistry; 1996 Apr; 35(15):4741-52. PubMed ID: 8664264 [TBL] [Abstract][Full Text] [Related]
11. Purification, crystallization and preliminary X-ray analysis of bifunctional isocitrate dehydrogenase kinase/phosphatase in complex with its substrate, isocitrate dehydrogenase, from Escherichia coli. Zheng J; Ji AX; Jia Z Acta Crystallogr Sect F Struct Biol Cryst Commun; 2009 Nov; 65(Pt 11):1153-6. PubMed ID: 19923739 [TBL] [Abstract][Full Text] [Related]
12. Purification and characterization of a fully active recombinant tobacco cytosolic NADP-dependent isocitrate dehydrogenase in Escherichia coli: evidence for a role for the N-terminal region in enzyme activity. Gálvez S; Hodges M; Bismuth E; Samson I; Teller S; Gadal P Arch Biochem Biophys; 1995 Oct; 323(1):164-8. PubMed ID: 7487062 [TBL] [Abstract][Full Text] [Related]
13. Pyruvate metabolism and the phosphorylation state of isocitrate dehydrogenase in Escherichia coli. el-Mansi EM; Nimmo HG; Holms WH J Gen Microbiol; 1986 Mar; 132(3):797-806. PubMed ID: 3525743 [TBL] [Abstract][Full Text] [Related]
15. Nondecarboxylating and decarboxylating isocitrate dehydrogenases: oxalosuccinate reductase as an ancestral form of isocitrate dehydrogenase. Aoshima M; Igarashi Y J Bacteriol; 2008 Mar; 190(6):2050-5. PubMed ID: 18203822 [TBL] [Abstract][Full Text] [Related]
16. Mutant IDH1 enhances the production of 2-hydroxyglutarate due to its kinetic mechanism. Rendina AR; Pietrak B; Smallwood A; Zhao H; Qi H; Quinn C; Adams ND; Concha N; Duraiswami C; Thrall SH; Sweitzer S; Schwartz B Biochemistry; 2013 Jul; 52(26):4563-77. PubMed ID: 23731180 [TBL] [Abstract][Full Text] [Related]
17. Comparison of Mycobacterium tuberculosis isocitrate dehydrogenases (ICD-1 and ICD-2) reveals differences in coenzyme affinity, oligomeric state, pH tolerance and phylogenetic affiliation. Banerjee S; Nandyala A; Podili R; Katoch VM; Hasnain SE BMC Biochem; 2005 Sep; 6():20. PubMed ID: 16194279 [TBL] [Abstract][Full Text] [Related]
18. Mechanism-based inactivator of isocitrate lyases 1 and 2 from Pham TV; Murkin AS; Moynihan MM; Harris L; Tyler PC; Shetty N; Sacchettini JC; Huang HL; Meek TD Proc Natl Acad Sci U S A; 2017 Jul; 114(29):7617-7622. PubMed ID: 28679637 [TBL] [Abstract][Full Text] [Related]
19. An extracellular disulfide bond forming protein (DsbF) from Mycobacterium tuberculosis: structural, biochemical, and gene expression analysis. Chim N; Riley R; The J; Im S; Segelke B; Lekin T; Yu M; Hung LW; Terwilliger T; Whitelegge JP; Goulding CW J Mol Biol; 2010 Mar; 396(5):1211-26. PubMed ID: 20060836 [TBL] [Abstract][Full Text] [Related]
20. Understanding the impact of the cofactor swapping of isocitrate dehydrogenase over the growth phenotype of Escherichia coli on acetate by using constraint-based modeling. Armingol E; Tobar E; Cabrera R PLoS One; 2018; 13(4):e0196182. PubMed ID: 29677222 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]