These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 23410319)
1. Quantum Brayton cycle with coupled systems as working substance. Huang XL; Wang LC; Yi XX Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012144. PubMed ID: 23410319 [TBL] [Abstract][Full Text] [Related]
2. Generalized model and optimum performance of an irreversible quantum Brayton engine with spin systems. Wu F; Chen L; Sun F; Wu C; Li Q Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 2):016103. PubMed ID: 16486212 [TBL] [Abstract][Full Text] [Related]
3. Optimal analysis on the performance of an irreversible harmonic quantum Brayton refrigeration cycle. Lin B; Chen J Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056117. PubMed ID: 14682856 [TBL] [Abstract][Full Text] [Related]
4. Quantum Otto engine of a two-level atom with single-mode fields. Wang J; Wu Z; He J Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041148. PubMed ID: 22680458 [TBL] [Abstract][Full Text] [Related]
5. General formalism of local thermodynamics with an example: Quantum Otto engine with a spin-1/2 coupled to an arbitrary spin. Altintas F; Müstecaplıoğlu ÖE Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022142. PubMed ID: 26382378 [TBL] [Abstract][Full Text] [Related]
6. Effects of reservoir squeezing on quantum systems and work extraction. Huang XL; Wang T; Yi XX Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051105. PubMed ID: 23214736 [TBL] [Abstract][Full Text] [Related]
8. Quantum thermodynamic cycles and quantum heat engines. II. Quan HT Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041129. PubMed ID: 19518195 [TBL] [Abstract][Full Text] [Related]
9. Efficiency and its bounds for a quantum Einstein engine at maximum power. Yan H; Guo H Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051135. PubMed ID: 23214766 [TBL] [Abstract][Full Text] [Related]
10. Multiparticle quantum Szilard engine with optimal cycles assisted by a Maxwell's demon. Cai CY; Dong H; Sun CP Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031114. PubMed ID: 22587045 [TBL] [Abstract][Full Text] [Related]
11. Efficiency and its bounds for thermal engines at maximum power using Newton's law of cooling. Yan H; Guo H Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011146. PubMed ID: 22400551 [TBL] [Abstract][Full Text] [Related]
12. Finite-power performance of quantum heat engines in linear response. Liu Q; He J; Ma Y; Wang J Phys Rev E; 2019 Jul; 100(1-1):012105. PubMed ID: 31499858 [TBL] [Abstract][Full Text] [Related]
13. Otto Engine: Classical and Quantum Approach. Peña FJ; Negrete O; Cortés N; Vargas P Entropy (Basel); 2020 Jul; 22(7):. PubMed ID: 33286527 [TBL] [Abstract][Full Text] [Related]
15. Quantum refrigerators and the third law of thermodynamics. Levy A; Alicki R; Kosloff R Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061126. PubMed ID: 23005070 [TBL] [Abstract][Full Text] [Related]
16. Efficiency at maximum power of a quantum heat engine based on two coupled oscillators. Wang J; Ye Z; Lai Y; Li W; He J Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062134. PubMed ID: 26172688 [TBL] [Abstract][Full Text] [Related]
17. Expected behavior of quantum thermodynamic machines with prior information. Thomas G; Johal RS Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041146. PubMed ID: 22680456 [TBL] [Abstract][Full Text] [Related]
18. Efficiency at maximum power of a heat engine working with a two-level atomic system. Wang R; Wang J; He J; Ma Y Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042119. PubMed ID: 23679385 [TBL] [Abstract][Full Text] [Related]
19. Quantum Otto cycle efficiency on coupled qudits. Ivanchenko EA Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032124. PubMed ID: 26465443 [TBL] [Abstract][Full Text] [Related]
20. Restrictions on linear heat capacities from Joule-Brayton maximum-work cycle efficiency. Angulo-Brown F; Gonzalez-Ayala J; Arias-Hernandez LA Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022134. PubMed ID: 25353449 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]