These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

429 related articles for article (PubMed ID: 23410341)

  • 41. Pinning of the Contact Line during Evaporation on Heterogeneous Surfaces: Slowdown or Temporary Immobilization? Insights from a Nanoscale Study.
    Zhang J; Müller-Plathe F; Leroy F
    Langmuir; 2015 Jul; 31(27):7544-52. PubMed ID: 26090782
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Drop rebound after impact: the role of the receding contact angle.
    Antonini C; Villa F; Bernagozzi I; Amirfazli A; Marengo M
    Langmuir; 2013 Dec; 29(52):16045-50. PubMed ID: 24028086
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Influence of surface wettability on transport mechanisms governing water droplet evaporation.
    Pan Z; Weibel JA; Garimella SV
    Langmuir; 2014 Aug; 30(32):9726-30. PubMed ID: 25105726
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thermal slip for liquids at rough solid surfaces.
    Zhang C; Chen Y; Peterson GP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062407. PubMed ID: 25019794
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An effective medium approach to predict the apparent contact angle of drops on super-hydrophobic randomly rough surfaces.
    Bottiglione F; Carbone G
    J Phys Condens Matter; 2015 Jan; 27(1):015009. PubMed ID: 25469488
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of surface texturing on superoleophobicity, contact angle hysteresis, and "robustness".
    Zhao H; Park KC; Law KY
    Langmuir; 2012 Oct; 28(42):14925-34. PubMed ID: 22992132
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Solid-solid contacts due to surface roughness and their effects on suspension behaviour.
    Davis RH; Zhao Y; Galvin KP; Wilson HJ
    Philos Trans A Math Phys Eng Sci; 2003 May; 361(1806):871-94. PubMed ID: 12804219
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Contact angle hysteresis and pinning at periodic defects in statics.
    Iliev S; Pesheva N; Nikolayev VS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012406. PubMed ID: 25122314
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Experimental investigation of contact angle, curvature, and contact line motion in dropwise condensation and evaporation.
    Gokhale SJ; Plawsky JL; Wayner PC
    J Colloid Interface Sci; 2003 Mar; 259(2):354-66. PubMed ID: 16256516
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Micrometer-sized water droplet impingement dynamics and evaporation on a flat dry surface.
    Briones AM; Ervin JS; Putnam SA; Byrd LW; Gschwender L
    Langmuir; 2010 Aug; 26(16):13272-86. PubMed ID: 20695569
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Viscous flow of a volatile liquid on an inclined heated surface.
    Ajaev VS
    J Colloid Interface Sci; 2004 Dec; 280(1):165-73. PubMed ID: 15476787
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Wetting: Inverse Dynamic Problem and Equations for Microscopic Parameters.
    Voinov OV
    J Colloid Interface Sci; 2000 Jun; 226(1):5-15. PubMed ID: 11401339
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Asymptotic solutions for the relaxation of the contact line in the Wilhelmy-plate geometry: The contact line dissipation approach.
    Iliev S; Pesheva N; Iliev D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011607. PubMed ID: 20365384
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Monte Carlo simulation strategies for computing the wetting properties of fluids at geometrically rough surfaces.
    Kumar V; Sridhar S; Errington JR
    J Chem Phys; 2011 Nov; 135(18):184702. PubMed ID: 22088073
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Contact angle saturation in electrowetting.
    Quinn A; Sedev R; Ralston J
    J Phys Chem B; 2005 Apr; 109(13):6268-75. PubMed ID: 16851696
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Understanding the influence of Coulomb and dispersion interactions on the wetting behavior of ionic liquids.
    Rane KS; Errington JR
    J Chem Phys; 2014 Nov; 141(17):174706. PubMed ID: 25381536
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The effect of temperature on contact angles and wetting transitions for n-alkanes on PTFE.
    Diaz ME; Savage MD; Cerro RL
    J Colloid Interface Sci; 2017 Oct; 503():159-167. PubMed ID: 28521218
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular transport and flow past hard and soft surfaces: computer simulation of model systems.
    Léonforte F; Servantie J; Pastorino C; Müller M
    J Phys Condens Matter; 2011 May; 23(18):184105. PubMed ID: 21508476
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evaporation of nanodroplets on heated substrates: a molecular dynamics simulation study.
    Zhang J; Leroy F; Müller-Plathe F
    Langmuir; 2013 Aug; 29(31):9770-82. PubMed ID: 23848165
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Contact angle and local wetting at contact line.
    Li R; Shan Y
    Langmuir; 2012 Nov; 28(44):15624-8. PubMed ID: 23066985
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.