These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 23410364)

  • 1. Effect of demographic noise in a phytoplankton-zooplankton model of bloom dynamics.
    Olla P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012712. PubMed ID: 23410364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytoplankton-zooplankton dynamics in periodic environments taking into account eutrophication.
    Luo J
    Math Biosci; 2013 Oct; 245(2):126-36. PubMed ID: 23791607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Responses of phyto- and zooplankton communities to Prymnesium polylepis (Prymnesiales) bloom in the Baltic Sea.
    Gorokhova E; Hajdu S; Larsson U
    PLoS One; 2014; 9(11):e112985. PubMed ID: 25393031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dispersion/dilution enhances phytoplankton blooms in low-nutrient waters.
    Lehahn Y; Koren I; Sharoni S; d'Ovidio F; Vardi A; Boss E
    Nat Commun; 2017 Mar; 8():14868. PubMed ID: 28361926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamical analysis of a toxin-producing phytoplankton-zooplankton model with refuge.
    Li J; Song Y; Wan H
    Math Biosci Eng; 2017 Apr; 14(2):529-557. PubMed ID: 27879113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global Hopf bifurcation of a delayed phytoplankton-zooplankton system considering toxin producing effect and delay dependent coefficient.
    Jiang ZC; Bi XH; Zhang TQ; Pradeep BGSA
    Math Biosci Eng; 2019 Apr; 16(5):3807-3829. PubMed ID: 31499637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability and Hopf bifurcation analysis of a delayed phytoplankton-zooplankton model with Allee effect and linear harvesting.
    Meng XY; Li J
    Math Biosci Eng; 2019 Dec; 17(3):1973-2002. PubMed ID: 32233519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical flow effects can dictate plankton population dynamics.
    Woodward JR; Pitchford JW; Bees MA
    J R Soc Interface; 2019 Aug; 16(157):20190247. PubMed ID: 31387480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling Refuge Effect of Submerged Macrophytes in Lake System.
    Lv D; Fan M; Kang Y; Blanco K
    Bull Math Biol; 2016 Apr; 78(4):662-694. PubMed ID: 27055658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ecological dynamics of Barra Bonita (TietĂȘ River, SP, Brazil) reservoir: implications for its biodiversity.
    Tundisi JG; Matsumura-Tundisi T; Abe DS
    Braz J Biol; 2008 Nov; 68(4 Suppl):1079-98. PubMed ID: 19197478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards resolving the paradox of enrichment: the impact of zooplankton vertical migrations on plankton systems stability.
    Morozov AY; Petrovskii SV; Nezlin NP
    J Theor Biol; 2007 Oct; 248(3):501-11. PubMed ID: 17624371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mixed-mode oscillations and chaos in a prey-predator system with dormancy of predators.
    Kuwamura M; Chiba H
    Chaos; 2009 Dec; 19(4):043121. PubMed ID: 20059217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of toxin and nutrient for the occurrence and termination of plankton bloom--results drawn from field observations and a mathematical model.
    Pal S; Chatterjee S; Chattopadhyay J
    Biosystems; 2007; 90(1):87-100. PubMed ID: 17194523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patchy agglomeration as a transition from monospecies to recurrent plankton blooms.
    Chattopadhyay J; Chatterjee S; Venturino E
    J Theor Biol; 2008 Jul; 253(2):289-95. PubMed ID: 18456283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Propagation of Turing patterns in a plankton model.
    Upadhyay RK; Volpert V; Thakur NK
    J Biol Dyn; 2012; 6():524-38. PubMed ID: 22873604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fungal Parasite Transmission in a Planktonic Ecosystem Under Light and Nutrient Constraints.
    Yan Y; Ji J; Wang H
    Bull Math Biol; 2024 Oct; 86(11):136. PubMed ID: 39397103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterns and mechanisms of phytoplankton variability in Lake Washington (USA).
    Arhonditsis GB; Winder M; Brett MT; Schindler DE
    Water Res; 2004 Nov; 38(18):4013-27. PubMed ID: 15380991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A two or three compartments hyperbolic reaction-diffusion model for the aquatic food chain.
    Barbera E; Consolo G; Valenti G
    Math Biosci Eng; 2015 Jun; 12(3):451-72. PubMed ID: 25811556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The budget model of ecosystem of a shallow highly eutrophic lake].
    Kazantseva TI
    Zh Obshch Biol; 2003; 64(2):128-45. PubMed ID: 12723370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytoplankton-chytrid-zooplankton dynamics via a reaction-diffusion-advection mycoloop model.
    Zhang J; Han X; Wang H
    J Math Biol; 2024 Jun; 89(2):15. PubMed ID: 38884837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.