These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 23410381)

  • 1. Shaping of arm configuration space by prescription of non-Euclidean metrics with applications to human motor control.
    Biess A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012729. PubMed ID: 23410381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Riemannian geometric approach to human arm dynamics, movement optimization, and invariance.
    Biess A; Flash T; Liebermann DG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031927. PubMed ID: 21517543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computational model for redundant human three-dimensional pointing movements: integration of independent spatial and temporal motor plans simplifies movement dynamics.
    Biess A; Liebermann DG; Flash T
    J Neurosci; 2007 Nov; 27(48):13045-64. PubMed ID: 18045899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinematic feedback control laws for generating natural arm movements.
    Kim D; Jang C; Park FC
    Bioinspir Biomim; 2014 Mar; 9(1):016002. PubMed ID: 24343165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Minimum acceleration criterion with constraints implies bang-bang control as an underlying principle for optimal trajectories of arm reaching movements.
    Ben-Itzhak S; Karniel A
    Neural Comput; 2008 Mar; 20(3):779-812. PubMed ID: 18045017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracting motor synergies from random movements for low-dimensional task-space control of musculoskeletal robots.
    Fu KC; Dalla Libera F; Ishiguro H
    Bioinspir Biomim; 2015 Oct; 10(5):056016. PubMed ID: 26448530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional model to predict muscle forces and their relation to motor variances in reaching arm movements.
    Tibold R; Fazekas G; Laczko J
    J Appl Biomech; 2011 Nov; 27(4):362-74. PubMed ID: 21896947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A biologically inspired neural network controller for ballistic arm movements.
    Bernabucci I; Conforto S; Capozza M; Accornero N; Schmid M; D'Alessio T
    J Neuroeng Rehabil; 2007 Sep; 4():33. PubMed ID: 17767712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulating discrete and rhythmic multi-joint human arm movements by optimization of nonlinear performance indices.
    Biess A; Nagurka M; Flash T
    Biol Cybern; 2006 Jul; 95(1):31-53. PubMed ID: 16699783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model-based sensorimotor integration for multi-joint control: development of a virtual arm model.
    Song D; Lan N; Loeb GE; Gordon J
    Ann Biomed Eng; 2008 Jun; 36(6):1033-48. PubMed ID: 18299994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of probabilistic methods to predict muscle activity: implications for neuroprosthetics.
    Johnson LA; Fuglevand AJ
    J Neural Eng; 2009 Oct; 6(5):055008. PubMed ID: 19721180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smoothness maximization along a predefined path accurately predicts the speed profiles of complex arm movements.
    Todorov E; Jordan MI
    J Neurophysiol; 1998 Aug; 80(2):696-714. PubMed ID: 9705462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inter-joint coupling and joint angle synergies of human catching movements.
    Bockemühl T; Troje NF; Dürr V
    Hum Mov Sci; 2010 Feb; 29(1):73-93. PubMed ID: 19945187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reaching to grasp with a multi-jointed arm. I. Computational model.
    Torres EB; Zipser D
    J Neurophysiol; 2002 Nov; 88(5):2355-67. PubMed ID: 12424277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computing movement geometry: a step in sensory-motor transformations.
    Zipser D; Torres E
    Prog Brain Res; 2007; 165():411-24. PubMed ID: 17925261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of biophysical muscle properties on simulating fast human arm movements.
    Bayer A; Schmitt S; Günther M; Haeufle DFB
    Comput Methods Biomech Biomed Engin; 2017 Jun; 20(8):803-821. PubMed ID: 28387534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational model of a primate arm: from hand position to joint angles, joint torques and muscle forces.
    Chan SS; Moran DW
    J Neural Eng; 2006 Dec; 3(4):327-37. PubMed ID: 17124337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An optimization principle for determining movement duration.
    Tanaka H; Krakauer JW; Qian N
    J Neurophysiol; 2006 Jun; 95(6):3875-86. PubMed ID: 16571740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying control effort of biological and technical movements: an information-entropy-based approach.
    Haeufle DF; Günther M; Wunner G; Schmitt S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012716. PubMed ID: 24580266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Simplified Spinal-Like Controller Facilitates Muscle Synergies and Robust Reaching Motions.
    Stefanovic F; Galiana HL
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jan; 22(1):77-87. PubMed ID: 23996578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.