These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 23410419)

  • 1. Mean-field approximation of two coupled populations of excitable units.
    Franović I; Todorović K; Vasović N; Burić N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012922. PubMed ID: 23410419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noise-controlled oscillations and their bifurcations in coupled phase oscillators.
    Zaks MA; Neiman AB; Feistel S; Schimansky-Geier L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):066206. PubMed ID: 14754296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Persistence and failure of mean-field approximations adapted to a class of systems of delay-coupled excitable units.
    Franović I; Todorović K; Vasović N; Burić N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022926. PubMed ID: 25353564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synchronization of globally coupled two-state stochastic oscillators with a state-dependent refractory period.
    Escaff D; Harbola U; Lindenberg K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011131. PubMed ID: 23005392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ensembles of excitable two-state units with delayed feedback.
    Kouvaris N; Müller F; Schimansky-Geier L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 1):061124. PubMed ID: 21230661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synchronization in coupled time-delayed systems with parameter mismatch and noise perturbation.
    Sun Y; Ruan J
    Chaos; 2009 Dec; 19(4):043113. PubMed ID: 20059209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-Markovian approach to globally coupled excitable systems.
    Prager T; Falcke M; Schimansky-Geier L; Zaks MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011118. PubMed ID: 17677421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical analysis of destabilization resonances in time-delayed stochastic second-order dynamical systems and some implications for human motor control.
    Patanarapeelert K; Frank TD; Friedrich R; Beek PJ; Tang IM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 1):021901. PubMed ID: 16605356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature-driven coherence resonance and stochastic resonance in a thermochemical system.
    Lemarchand A; Gorecki J; Gorecki A; Nowakowski B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022916. PubMed ID: 25353554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Augmented moment method for stochastic ensembles with delayed couplings. I. Langevin model.
    Hasegawa H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 1):021911. PubMed ID: 15447519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noise induced complexity: from subthreshold oscillations to spiking in coupled excitable systems.
    Zaks MA; Sailer X; Schimansky-Geier L; Neiman AB
    Chaos; 2005 Jun; 15(2):26117. PubMed ID: 16035919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppression of deterministic and stochastic extreme desynchronization events using anticipated synchronization.
    Zamora-Munt J; Mirasso CR; Toral R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012921. PubMed ID: 24580311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frozen state of spiral waves in excitable media.
    Luo J; Zhang B; Zhan M
    Chaos; 2009 Sep; 19(3):033133. PubMed ID: 19792013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatio-temporal dynamics induced by competing instabilities in two asymmetrically coupled nonlinear evolution equations.
    Schüler D; Alonso S; Torcini A; Bär M
    Chaos; 2014 Dec; 24(4):043142. PubMed ID: 25554062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stationary oscillation of an impulsive delayed system and its application to chaotic neural networks.
    Sun J; Lin H
    Chaos; 2008 Sep; 18(3):033127. PubMed ID: 19045465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of moments of FitzHugh-Nagumo neuronal models and stochastic bifurcations.
    Tanabe S; Pakdaman K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 1):031911. PubMed ID: 11308682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synchrony suppression in ensembles of coupled oscillators via adaptive vanishing feedback.
    Montaseri G; Yazdanpanah MJ; Pikovsky A; Rosenblum M
    Chaos; 2013 Sep; 23(3):033122. PubMed ID: 24089958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two scenarios for the onset and suppression of collective oscillations in heterogeneous populations of active rotators.
    Klinshov V; Franović I
    Phys Rev E; 2019 Dec; 100(6-1):062211. PubMed ID: 31962480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mode and delay-dependent adaptive exponential synchronization in pth moment for stochastic delayed neural networks with Markovian switching.
    Zhou W; Tong D; Gao Y; Ji C; Su H
    IEEE Trans Neural Netw Learn Syst; 2012 Apr; 23(4):662-8. PubMed ID: 24805049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stochastic mean-field formulation of the dynamics of diluted neural networks.
    Angulo-Garcia D; Torcini A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022928. PubMed ID: 25768590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.