These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 23410428)

  • 1. Rotational motion of a droplet induced by interfacial tension.
    Nagai KH; Takabatake F; Sumino Y; Kitahata H; Ichikawa M; Yoshinaga N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013009. PubMed ID: 23410428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drift instability in the motion of a fluid droplet with a chemically reactive surface driven by Marangoni flow.
    Yoshinaga N; Nagai KH; Sumino Y; Kitahata H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016108. PubMed ID: 23005492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows.
    Liu H; Valocchi AJ; Zhang Y; Kang Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013010. PubMed ID: 23410429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regular self-motion of a liquid droplet powered by the chemical marangoni effect.
    Nagai K; Sumino Y; Yoshikawa K
    Colloids Surf B Biointerfaces; 2007 Apr; 56(1-2):197-200. PubMed ID: 17169535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear hydrodynamic effects induced by Rayleigh surface acoustic wave in sessile droplets.
    Alghane M; Chen BX; Fu YQ; Li Y; Desmulliez MP; Mohammed MI; Walton AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056304. PubMed ID: 23214873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manipulation of the Saffman-Taylor instability: a curvature-dependent surface tension approach.
    Rocha FM; Miranda JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013017. PubMed ID: 23410436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lehmann rotation of the cholesteric helix in droplets oriented by an electric field.
    Oswald P; Pirkl S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022509. PubMed ID: 25353491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of dynamic interfacial tension on droplet formation during membrane emulsification.
    van der Graaf S; Schroën CG; van der Sman RG; Boom RM
    J Colloid Interface Sci; 2004 Sep; 277(2):456-63. PubMed ID: 15341859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple-component lattice Boltzmann equation for fluid-filled vesicles in flow.
    Halliday I; Lishchuk SV; Spencer TJ; Pontrelli G; Care CM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023307. PubMed ID: 23496639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation and control of droplet size and frequency in projected spray mode of a gas metal arc welding (GMAW) process.
    Anzehaee MM; Haeri M
    ISA Trans; 2011 Jul; 50(3):409-18. PubMed ID: 21444083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase-field-based multiple-relaxation-time lattice Boltzmann model for incompressible multiphase flows.
    Liang H; Shi BC; Guo ZL; Chai ZH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053320. PubMed ID: 25353927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermocapillary migration of a drop: an exact solution with Newtonian interfacial rheology and stretching/shrinkage of interfacial area elements for small Marangoni numbers.
    Balasubramaniam R; Subramanian RS
    Ann N Y Acad Sci; 2004 Nov; 1027():303-10. PubMed ID: 15644363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lattice Boltzmann simulations of contact line motion in a liquid-gas system.
    Briant AJ; Papatzacos P; Yeomans JM
    Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):485-95. PubMed ID: 16214689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interfacial Dynamics in the Spontaneous Motion of an Aqueous Droplet.
    Suematsu NJ; Saikusa K; Nagata T; Izumi S
    Langmuir; 2019 Sep; 35(35):11601-11607. PubMed ID: 31397577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emulsion droplet formation in coflowing liquid streams.
    Chen Y; Wu L; Zhang C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013002. PubMed ID: 23410421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Droplet hydrodynamics during lysozyme protein crystallization.
    Pradhan T; Asfer M; Panigrahi PK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051602. PubMed ID: 23214788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical modeling of the transport to an intravascular bubble in a tube with a soluble/insoluble surfactant.
    Ayyaswamy PS; Zhang J; Eckmann DM
    Ann N Y Acad Sci; 2006 Sep; 1077():270-87. PubMed ID: 17124130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scheme for contact angle and its hysteresis in a multiphase lattice Boltzmann method.
    Wang L; Huang HB; Lu XY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013301. PubMed ID: 23410454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brownian dynamics simulation of rigid particles of arbitrary shape in external fields.
    Fernandes MX; de la Torre JG
    Biophys J; 2002 Dec; 83(6):3039-48. PubMed ID: 12496076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.