These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 23410433)
1. Proposal of a critical test of the Navier-Stokes-Fourier paradigm for compressible fluid continua. Brenner H Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013014. PubMed ID: 23410433 [TBL] [Abstract][Full Text] [Related]
2. Comment on "Proposal of a critical test of the Navier-Stokes-Fourier paradigm for compressible fluid continua". Felderhof BU Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):027001. PubMed ID: 24032976 [TBL] [Abstract][Full Text] [Related]
3. Fluid mechanics in fluids at rest. Brenner H Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016307. PubMed ID: 23005525 [TBL] [Abstract][Full Text] [Related]
4. A critical test of bivelocity hydrodynamics for mixtures. Brenner H J Chem Phys; 2010 Oct; 133(15):154102. PubMed ID: 20969365 [TBL] [Abstract][Full Text] [Related]
5. Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows. Liu H; Valocchi AJ; Zhang Y; Kang Q Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013010. PubMed ID: 23410429 [TBL] [Abstract][Full Text] [Related]
6. Phase-field-based multiple-relaxation-time lattice Boltzmann model for incompressible multiphase flows. Liang H; Shi BC; Guo ZL; Chai ZH Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053320. PubMed ID: 25353927 [TBL] [Abstract][Full Text] [Related]
7. Entropically damped form of artificial compressibility for explicit simulation of incompressible flow. Clausen JR Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013309. PubMed ID: 23410462 [TBL] [Abstract][Full Text] [Related]
8. Mass-conserved volumetric lattice Boltzmann method for complex flows with willfully moving boundaries. Yu H; Chen X; Wang Z; Deep D; Lima E; Zhao Y; Teague SD Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063304. PubMed ID: 25019909 [TBL] [Abstract][Full Text] [Related]
9. Radial viscous fingering in yield stress fluids: onset of pattern formation. Fontana JV; Lira SA; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013016. PubMed ID: 23410435 [TBL] [Abstract][Full Text] [Related]
10. A lattice kinetic scheme for incompressible viscous flows with heat transfer. Inamuro T Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):477-84. PubMed ID: 16210191 [TBL] [Abstract][Full Text] [Related]
11. Flow stabilization with active hydrodynamic cloaks. Urzhumov YA; Smith DR Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056313. PubMed ID: 23214882 [TBL] [Abstract][Full Text] [Related]
12. Pressure and kinetic energy transport across the cavity mouth in resonating cavities. Bailey PR; Abbá A; Tordella D Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013013. PubMed ID: 23410432 [TBL] [Abstract][Full Text] [Related]
13. Conduction-only transport phenomena in compressible bivelocity fluids: diffuse interfaces and Korteweg stresses. Brenner H Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):043020. PubMed ID: 24827345 [TBL] [Abstract][Full Text] [Related]
14. Circular band formation for incompressible viscous fluid-rigid-particle mixtures in a rotating cylinder. Hou S; Pan TW; Glowinski R Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):023013. PubMed ID: 25353577 [TBL] [Abstract][Full Text] [Related]
15. Breakdown parameter for kinetic modeling of multiscale gas flows. Meng J; Dongari N; Reese JM; Zhang Y Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063305. PubMed ID: 25019910 [TBL] [Abstract][Full Text] [Related]
16. Incorporating forcing terms in cascaded lattice Boltzmann approach by method of central moments. Premnath KN; Banerjee S Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036702. PubMed ID: 19905241 [TBL] [Abstract][Full Text] [Related]
17. Assessing a hydrodynamic description for instabilities in highly dissipative, freely cooling granular gases. Mitrano PP; Garzó V; Hilger AM; Ewasko CJ; Hrenya CM Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041303. PubMed ID: 22680465 [TBL] [Abstract][Full Text] [Related]
18. Smoothed-particle-hydrodynamics modeling of dissipation mechanisms in gravity waves. Colagrossi A; Souto-Iglesias A; Antuono M; Marrone S Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023302. PubMed ID: 23496634 [TBL] [Abstract][Full Text] [Related]
19. Effects of rarefaction in microflows between coaxial cylinders. Taheri P; Struchtrup H Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066317. PubMed ID: 20365277 [TBL] [Abstract][Full Text] [Related]
20. Towards the simplest hydrodynamic lattice-gas model. Boghosian BM; Love PJ; Meyer DA Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):333-44. PubMed ID: 16214684 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]