These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 23410454)

  • 21. Modeling contact angle hysteresis of a liquid droplet sitting on a cosine wave-like pattern surface.
    Promraksa A; Chen LJ
    J Colloid Interface Sci; 2012 Oct; 384(1):172-81. PubMed ID: 22818957
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phase-field-based multiple-relaxation-time lattice Boltzmann model for incompressible multiphase flows.
    Liang H; Shi BC; Guo ZL; Chai ZH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053320. PubMed ID: 25353927
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Boundary conditions for surface reactions in lattice Boltzmann simulations.
    Gillissen JJ; Looije N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063307. PubMed ID: 25019912
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Univariate polynomial equation providing on-lattice higher-order models of thermal lattice Boltzmann theory.
    Shim JW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013312. PubMed ID: 23410465
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lattice Boltzmann Modeling of Drying of Porous Media Considering Contact Angle Hysteresis.
    Qin F; Zhao J; Kang Q; Derome D; Carmeliet J
    Transp Porous Media; 2021; 140(1):395-420. PubMed ID: 34720284
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows.
    Liu H; Valocchi AJ; Zhang Y; Kang Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013010. PubMed ID: 23410429
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simulation of droplet formation and coalescence using lattice Boltzmann-based single-phase model.
    Xing XQ; Butler DL; Ng SH; Wang Z; Danyluk S; Yang C
    J Colloid Interface Sci; 2007 Jul; 311(2):609-18. PubMed ID: 17434175
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simulated Contact Angle Hysteresis of a Three-Dimensional Drop on a Chemically Heterogeneous Surface: A Numerical Example.
    Brandon S; Wachs A; Marmur A
    J Colloid Interface Sci; 1997 Jul; 191(1):110-6. PubMed ID: 9241210
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An empirically validated analytical model of droplet dynamics in electrowetting on dielectric devices.
    Schertzer MJ; Gubarenko SI; Ben-Mrad R; Sullivan PE
    Langmuir; 2010 Dec; 26(24):19230-8. PubMed ID: 21080633
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Droplet compression and relaxation by a superhydrophobic surface: contact angle hysteresis.
    Hong SJ; Chou TH; Chan SH; Sheng YJ; Tsao HK
    Langmuir; 2012 Apr; 28(13):5606-13. PubMed ID: 22390774
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Theoretical and numerical study on the well-balanced regularized lattice Boltzmann model for two-phase flow.
    Zhang Q; Jiang M; Zhuo C; Zhong C; Liu S
    Phys Rev E; 2023 Nov; 108(5-2):055309. PubMed ID: 38115487
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient modelling of droplet dynamics on complex surfaces.
    Karapetsas G; Chamakos NT; Papathanasiou AG
    J Phys Condens Matter; 2016 Mar; 28(8):085101. PubMed ID: 26828706
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contact angle hysteresis of a water droplet on a hydrophobic fuel cell surface.
    Zhang X; Qin Y
    J Colloid Interface Sci; 2019 Jun; 545():231-241. PubMed ID: 30889414
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wettability effects on contact line dynamics of droplet motion in an inclined channel.
    Randive P; Dalal A; Sahu KC; Biswas G; Mukherjee PP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):053006. PubMed ID: 26066248
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Entropically damped form of artificial compressibility for explicit simulation of incompressible flow.
    Clausen JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013309. PubMed ID: 23410462
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wettability of silicone-hydrogel contact lenses in the presence of tear-film components.
    Cheng L; Muller SJ; Radke CJ
    Curr Eye Res; 2004 Feb; 28(2):93-108. PubMed ID: 14972715
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Noise source identification with the lattice Boltzmann method.
    Vergnault E; Malaspinas O; Sagaut P
    J Acoust Soc Am; 2013 Mar; 133(3):1293-305. PubMed ID: 23464002
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wetting hysteresis of nanodrops on nanorough surfaces.
    Chang CC; Sheng YJ; Tsao HK
    Phys Rev E; 2016 Oct; 94(4-1):042807. PubMed ID: 27841480
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Droplets on inclined rough surfaces.
    Hyväluoma J; Koponen A; Raiskinmäki P; Timonen J
    Eur Phys J E Soft Matter; 2007 Jul; 23(3):289-93. PubMed ID: 17646904
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microscale boundary conditions of the lattice Boltzmann equation method for simulating microtube flows.
    Zheng L; Guo Z; Shi B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016712. PubMed ID: 23005568
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.