These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

469 related articles for article (PubMed ID: 23410455)

  • 1. Mesoscopic model for microscale hydrodynamics and interfacial phenomena: slip, films, and contact-angle hysteresis.
    Colosqui CE; Kavousanakis ME; Papathanasiou AG; Kevrekidis IG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013302. PubMed ID: 23410455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scheme for contact angle and its hysteresis in a multiphase lattice Boltzmann method.
    Wang L; Huang HB; Lu XY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013301. PubMed ID: 23410454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coarsening dynamics of dewetting nanodroplets on chemically patterned substrates.
    Asgari M; Moosavi A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016303. PubMed ID: 23005521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel and global approach of the complex and interconnected phenomena related to the contact line movement past a solid surface from hydrophobized silica gel.
    Suciu CV; Iwatsubo T; Yaguchi K; Ikenaga M
    J Colloid Interface Sci; 2005 Mar; 283(1):196-214. PubMed ID: 15694440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrodynamic drag-force measurement and slip length on microstructured surfaces.
    Maali A; Pan Y; Bhushan B; Charlaix E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066310. PubMed ID: 23005209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mass-conserved volumetric lattice Boltzmann method for complex flows with willfully moving boundaries.
    Yu H; Chen X; Wang Z; Deep D; Lima E; Zhao Y; Teague SD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063304. PubMed ID: 25019909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liquid drops on a surface: using density functional theory to calculate the binding potential and drop profiles and comparing with results from mesoscopic modelling.
    Hughes AP; Thiele U; Archer AJ
    J Chem Phys; 2015 Feb; 142(7):074702. PubMed ID: 25702019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Droplet motion in one-component fluids on solid substrates with wettability gradients.
    Xu X; Qian T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051601. PubMed ID: 23004770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Friction between solids and adsorbed fluids is spatially distributed at the nanoscale.
    Bhatia SK; Nicholson D
    Langmuir; 2013 Nov; 29(47):14519-26. PubMed ID: 24168469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular transport and flow past hard and soft surfaces: computer simulation of model systems.
    Léonforte F; Servantie J; Pastorino C; Müller M
    J Phys Condens Matter; 2011 May; 23(18):184105. PubMed ID: 21508476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying Differences and Similarities in Static and Dynamic Contact Angles between Nanoscale and Microscale Textured Surfaces Using Molecular Dynamics Simulations.
    Slovin MR; Shirts MR
    Langmuir; 2015 Jul; 31(29):7980-90. PubMed ID: 26110823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contact line motion in confined liquid-gas systems: Slip versus phase transition.
    Xu X; Qian T
    J Chem Phys; 2010 Nov; 133(20):204704. PubMed ID: 21133449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lattice Boltzmann method for contact-line motion of binary fluids with high density ratio.
    Liang H; Liu H; Chai Z; Shi B
    Phys Rev E; 2019 Jun; 99(6-1):063306. PubMed ID: 31330728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of dynamic contact angle in a volume of fluid (VOF) model for a microfluidic capillary flow.
    Ashish Saha A; Mitra SK
    J Colloid Interface Sci; 2009 Nov; 339(2):461-80. PubMed ID: 19732904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slip flow in graphene nanochannels.
    Kannam SK; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2011 Oct; 135(14):144701. PubMed ID: 22010725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-way coupled SPH and particle level set fluid simulation.
    Losasso F; Talton J; Kwatra N; Fedkiw R
    IEEE Trans Vis Comput Graph; 2008; 14(4):797-804. PubMed ID: 18467755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wetting and spreading of nanofluids on solid surfaces driven by the structural disjoining pressure: statics analysis and experiments.
    Kondiparty K; Nikolov A; Wu S; Wasan D
    Langmuir; 2011 Apr; 27(7):3324-35. PubMed ID: 21395240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contact angles in the pseudopotential lattice Boltzmann modeling of wetting.
    Li Q; Luo KH; Kang QJ; Chen Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):053301. PubMed ID: 25493898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water slippage versus contact angle: a quasiuniversal relationship.
    Huang DM; Sendner C; Horinek D; Netz RR; Bocquet L
    Phys Rev Lett; 2008 Nov; 101(22):226101. PubMed ID: 19113490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.