These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 23410585)
1. Complement C2 siRNA mediated therapy of myasthenia gravis in mice. Huda R; Tüzün E; Christadoss P J Autoimmun; 2013 May; 42():94-104. PubMed ID: 23410585 [TBL] [Abstract][Full Text] [Related]
2. Classical complement pathway in experimental autoimmune myasthenia gravis pathogenesis. Christadoss P; Tüzün E; Li J; Saini SS; Yang H Ann N Y Acad Sci; 2008; 1132():210-9. PubMed ID: 18567870 [TBL] [Abstract][Full Text] [Related]
3. Complement regulator CD59 deficiency fails to augment susceptibility to actively induced experimental autoimmune myasthenia gravis. Tüzün E; Saini SS; Morgan BP; Christadoss P J Neuroimmunol; 2006 Dec; 181(1-2):29-33. PubMed ID: 17056125 [TBL] [Abstract][Full Text] [Related]
4. Genetic evidence for involvement of classical complement pathway in induction of experimental autoimmune myasthenia gravis. Tüzün E; Scott BG; Goluszko E; Higgs S; Christadoss P J Immunol; 2003 Oct; 171(7):3847-54. PubMed ID: 14500686 [TBL] [Abstract][Full Text] [Related]
5. Novel animal models of acetylcholine receptor antibody-related myasthenia gravis. Tüzün E; Allman W; Ulusoy C; Yang H; Christadoss P Ann N Y Acad Sci; 2012 Dec; 1274():133-9. PubMed ID: 23252908 [TBL] [Abstract][Full Text] [Related]
6. Genetic evidence for the involvement of Fcgamma receptor III in experimental autoimmune myasthenia gravis pathogenesis. Tüzün E; Saini SS; Yang H; Alagappan D; Higgs S; Christadoss P J Neuroimmunol; 2006 May; 174(1-2):157-67. PubMed ID: 16527362 [TBL] [Abstract][Full Text] [Related]
7. Predictive value of serum anti-C1q antibody levels in experimental autoimmune myasthenia gravis. Tüzün E; Saini SS; Ghosh S; Rowin J; Meriggioli MN; Christadoss P Neuromuscul Disord; 2006 Feb; 16(2):137-43. PubMed ID: 16427283 [TBL] [Abstract][Full Text] [Related]
8. Dendritic cells transduced with lentiviral-mediated RelB-specific ShRNAs inhibit the development of experimental autoimmune myasthenia gravis. Zhang Y; Yang H; Xiao B; Wu M; Zhou W; Li J; Li G; Christadoss P Mol Immunol; 2009 Feb; 46(4):657-67. PubMed ID: 19038457 [TBL] [Abstract][Full Text] [Related]
9. Targeting complement system to treat myasthenia gravis. Huda R; Tüzün E; Christadoss P Rev Neurosci; 2014; 25(4):575-83. PubMed ID: 24731953 [TBL] [Abstract][Full Text] [Related]
10. Acetylcholine receptor-induced experimental myasthenia gravis: what have we learned from animal models after three decades? Baggi F; Antozzi C; Toscani C; Cordiglieri C Arch Immunol Ther Exp (Warsz); 2012 Feb; 60(1):19-30. PubMed ID: 22159475 [TBL] [Abstract][Full Text] [Related]
11. Novel complement inhibitor limits severity of experimentally myasthenia gravis. Soltys J; Kusner LL; Young A; Richmonds C; Hatala D; Gong B; Shanmugavel V; Kaminski HJ Ann Neurol; 2009 Jan; 65(1):67-75. PubMed ID: 19194881 [TBL] [Abstract][Full Text] [Related]
12. Mice with IFN-gamma receptor deficiency are less susceptible to experimental autoimmune myasthenia gravis. Zhang GX; Xiao BG; Bai XF; van der Meide PH; Orn A; Link H J Immunol; 1999 Apr; 162(7):3775-81. PubMed ID: 10201893 [TBL] [Abstract][Full Text] [Related]
13. The limitation of IL-10-exposed dendritic cells in the treatment of experimental autoimmune myasthenia gravis and myasthenia gravis. Xiao BG; Duan RS; Zhu WH; Lu CZ Cell Immunol; 2006 Jun; 241(2):95-101. PubMed ID: 17005165 [TBL] [Abstract][Full Text] [Related]