These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 23410675)
1. CO₂ and O₂ respiration kinetics in hydrocarbon contaminated soils amended with organic carbon sources used to determine catabolic diversity. Pietravalle S; Aspray TJ Environ Pollut; 2013 May; 176():42-7. PubMed ID: 23410675 [TBL] [Abstract][Full Text] [Related]
2. Effect of nitrogen amendment on respiration and respiratory quotient (RQ) in three hydrocarbon contaminated soils of different type. Aspray T; Gluszek A; Carvalho D Chemosphere; 2008 Jun; 72(6):947-51. PubMed ID: 18462777 [TBL] [Abstract][Full Text] [Related]
3. Determination of microbial carbon sources and cycling during remediation of petroleum hydrocarbon impacted soil using natural abundance (14)C analysis of PLFA. Cowie BR; Greenberg BM; Slater GF Environ Sci Technol; 2010 Apr; 44(7):2322-7. PubMed ID: 20196610 [TBL] [Abstract][Full Text] [Related]
4. Microbial respiration and natural attenuation of benzene contaminated soils investigated by cavity enhanced Raman multi-gas spectroscopy. Jochum T; Michalzik B; Bachmann A; Popp J; Frosch T Analyst; 2015 May; 140(9):3143-9. PubMed ID: 25751376 [TBL] [Abstract][Full Text] [Related]
5. Microbial catabolic diversity in soils contaminated with hydrocarbons and heavy metals. Shi W; Bischoff M; Turco R; Konopka A Environ Sci Technol; 2005 Apr; 39(7):1974-9. PubMed ID: 15871226 [TBL] [Abstract][Full Text] [Related]
6. Petroleum hydrocarbon biodegradation under seasonal freeze-thaw soil temperature regimes in contaminated soils from a sub-Arctic site. Chang W; Klemm S; Beaulieu C; Hawari J; Whyte L; Ghoshal S Environ Sci Technol; 2011 Feb; 45(3):1061-6. PubMed ID: 21194195 [TBL] [Abstract][Full Text] [Related]
7. Metabolic and bacterial diversity in soils historically contaminated by heavy metals and hydrocarbons. Vivas A; Moreno B; del Val C; Macci C; Masciandaro G; Benitez E J Environ Monit; 2008 Nov; 10(11):1287-96. PubMed ID: 18974897 [TBL] [Abstract][Full Text] [Related]
8. Respirometry for assessing the biodegradation of petroleum hydrocarbons. Plaza G; Ulfig K; Worsztynowicz A; Malina G; Krzeminska B; Brigmon RL Environ Technol; 2005 Feb; 26(2):161-9. PubMed ID: 15791797 [TBL] [Abstract][Full Text] [Related]
9. Decomposition of heavy metal contaminated nettles (Urtica dioica L.) in soils subjected to heavy metal pollution by river sediments. Khan KS; Joergensen RG Chemosphere; 2006 Nov; 65(6):981-7. PubMed ID: 16677685 [TBL] [Abstract][Full Text] [Related]
10. Electrokinetic remediation and microbial community shift of β-cyclodextrin-dissolved petroleum hydrocarbon-contaminated soil. Wan C; Du M; Lee DJ; Yang X; Ma W; Zheng L Appl Microbiol Biotechnol; 2011 Mar; 89(6):2019-25. PubMed ID: 21052991 [TBL] [Abstract][Full Text] [Related]
11. Sustainable remediation--the application of bioremediated soil for use in the degradation of TNT chips. Erkelens M; Adetutu EM; Taha M; Tudararo-Aherobo L; Antiabong J; Provatas A; Ball AS J Environ Manage; 2012 Nov; 110():69-76. PubMed ID: 22728982 [TBL] [Abstract][Full Text] [Related]
12. Influence of black carbon addition on phenanthrene dissipation and microbial community structure in soil. Wang P; Wang H; Wu L; Di H; He Y; Xu J Environ Pollut; 2012 Feb; 161():121-7. PubMed ID: 22230076 [TBL] [Abstract][Full Text] [Related]
13. Plant-soil distribution of potentially toxic elements in response to elevated atmospheric CO2. Duval BD; Dijkstra P; Natali SM; Megonigal JP; Ketterer ME; Drake BG; Lerdau MT; Gordon G; Anbar AD; Hungate BA Environ Sci Technol; 2011 Apr; 45(7):2570-4. PubMed ID: 21405117 [TBL] [Abstract][Full Text] [Related]
14. Modified soil respiration model (URESP) extended to sub-zero temperatures for biostimulated petroleum hydrocarbon-contaminated sub-Arctic soils. Kim J; Chang W Sci Total Environ; 2019 Jun; 667():400-411. PubMed ID: 30831374 [TBL] [Abstract][Full Text] [Related]
15. Microbial community response to petroleum hydrocarbon contamination in the unsaturated zone at the experimental field site Vaerløse, Denmark. Kaufmann K; Christophersen M; Buttler A; Harms H; Höhener P FEMS Microbiol Ecol; 2004 Jun; 48(3):387-99. PubMed ID: 19712308 [TBL] [Abstract][Full Text] [Related]
16. A rapid in situ respiration test for measuring aerobic biodegradation rates of hydrocarbons in soil. Hinchee RE; Ong SK J Air Waste Manage Assoc; 1992 Oct; 42(10):1305-12. PubMed ID: 1418936 [TBL] [Abstract][Full Text] [Related]
17. Assessing in situ mineralization of recalcitrant organic compounds in vadose zone sediments using delta13C and 14C measurements. Kirtland BC; Aelion CM; Stone PA J Contam Hydrol; 2005 Jan; 76(1-2):1-18. PubMed ID: 15588571 [TBL] [Abstract][Full Text] [Related]
18. Comparative value of phosphate sources on the immobilization of lead, and leaching of lead and phosphorus in lead contaminated soils. Park JH; Bolan N; Megharaj M; Naidu R Sci Total Environ; 2011 Jan; 409(4):853-60. PubMed ID: 21130488 [TBL] [Abstract][Full Text] [Related]
19. Linking soil O2, CO2, and CH4 concentrations in a Wetland soil: implications for CO2 and CH4 fluxes. Elberling B; Askaer L; Jørgensen CJ; Joensen HP; Kühl M; Glud RN; Lauritsen FR Environ Sci Technol; 2011 Apr; 45(8):3393-9. PubMed ID: 21413790 [TBL] [Abstract][Full Text] [Related]
20. The influence of biochar and black carbon on reduction and bioavailability of chromate in soils. Choppala GK; Bolan NS; Megharaj M; Chen Z; Naidu R J Environ Qual; 2012; 41(4):1175-84. PubMed ID: 22751060 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]